Back to Search Start Over

Balances: a New Perspective for Microbiome Analysis

Authors :
M. Luz Calle
Javier Rivera Pinto
Marc Noguera-Julian
Roger Paredes
Juan José Egozcue
Vera Pawlowsky-Glahn
Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
Universitat Politècnica de Catalunya. COSDA-UPC - COmpositional and Spatial Data Analysis
Source :
mSystems, Vol 3, Iss 4, p e00053-18 (2018), mSystems, mSystems, Vol 3, Iss 4 (2018), Recercat. Dipósit de la Recerca de Catalunya, instname, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol
Publication Year :
2018
Publisher :
American Society for Microbiology, 2018.

Abstract

We propose a new algorithm for the identification of microbial signatures. These microbial signatures can be used for diagnosis, prognosis, or prediction of therapeutic response based on an individual’s specific microbiota.<br />High-throughput sequencing technologies have revolutionized microbiome research by allowing the relative quantification of microbiome composition and function in different environments. In this work we focus on the identification of microbial signatures, groups of microbial taxa that are predictive of a phenotype of interest. We do this by acknowledging the compositional nature of the microbiome and the fact that it carries relative information. Thus, instead of defining a microbial signature as a linear combination in real space corresponding to the abundances of a group of taxa, we consider microbial signatures given by the geometric means of data from two groups of taxa whose relative abundances, or balance, are associated with the response variable of interest. In this work we present selbal, a greedy stepwise algorithm for selection of balances or microbial signatures that preserves the principles of compositional data analysis. We illustrate the algorithm with 16S rRNA abundance data from a Crohn’s microbiome study and an HIV microbiome study. IMPORTANCE We propose a new algorithm for the identification of microbial signatures. These microbial signatures can be used for diagnosis, prognosis, or prediction of therapeutic response based on an individual’s specific microbiota.

Details

Language :
English
ISSN :
23795077
Volume :
3
Issue :
4
Database :
OpenAIRE
Journal :
mSystems
Accession number :
edsair.doi.dedup.....18da5c6ee897b2da4dab5f6ec7b13ca1