Back to Search
Start Over
Balances: a New Perspective for Microbiome Analysis
- Source :
- mSystems, Vol 3, Iss 4, p e00053-18 (2018), mSystems, mSystems, Vol 3, Iss 4 (2018), Recercat. Dipósit de la Recerca de Catalunya, instname, Dipòsit Digital de Documents de la UAB, Universitat Autònoma de Barcelona, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol
- Publication Year :
- 2018
- Publisher :
- American Society for Microbiology, 2018.
-
Abstract
- We propose a new algorithm for the identification of microbial signatures. These microbial signatures can be used for diagnosis, prognosis, or prediction of therapeutic response based on an individual’s specific microbiota.<br />High-throughput sequencing technologies have revolutionized microbiome research by allowing the relative quantification of microbiome composition and function in different environments. In this work we focus on the identification of microbial signatures, groups of microbial taxa that are predictive of a phenotype of interest. We do this by acknowledging the compositional nature of the microbiome and the fact that it carries relative information. Thus, instead of defining a microbial signature as a linear combination in real space corresponding to the abundances of a group of taxa, we consider microbial signatures given by the geometric means of data from two groups of taxa whose relative abundances, or balance, are associated with the response variable of interest. In this work we present selbal, a greedy stepwise algorithm for selection of balances or microbial signatures that preserves the principles of compositional data analysis. We illustrate the algorithm with 16S rRNA abundance data from a Crohn’s microbiome study and an HIV microbiome study. IMPORTANCE We propose a new algorithm for the identification of microbial signatures. These microbial signatures can be used for diagnosis, prognosis, or prediction of therapeutic response based on an individual’s specific microbiota.
- Subjects :
- 0301 basic medicine
Ciències de la salut::Medicina [Àrees temàtiques de la UPC]
Physiology
Absolute quantification
030106 microbiology
Human immunodeficiency virus (HIV)
lcsh:QR1-502
Matemàtiques i estadística::Matemàtica aplicada a les ciències [Àrees temàtiques de la UPC]
microbiome
Microorganismes
Computational biology
Compositional data
Biology
medicine.disease_cause
Biochemistry
Microbiology
lcsh:Microbiology
Host-Microbe Biology
Balances
03 medical and health sciences
Abundance (ecology)
balances
Genetics
medicine
Microbiome
Molecular Biology
Relative species abundance
Ecology, Evolution, Behavior and Systematics
Selection (genetic algorithm)
Ecology
Microbiota
Methods and Protocols
Univariate
food and beverages
QR1-502
Computer Science Applications
compositional data
030104 developmental biology
Taxon
Evolutionary biology
Modeling and Simulation
Identification (biology)
Balance of nature
Subjects
Details
- Language :
- English
- ISSN :
- 23795077
- Volume :
- 3
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- mSystems
- Accession number :
- edsair.doi.dedup.....18da5c6ee897b2da4dab5f6ec7b13ca1