Back to Search Start Over

DeepForest: A Python package for RGB deep learning tree crown delineation

Authors :
Ben G. Weinstein
Mélaine Aubry-Kientz
Sergio Marconi
Ethan P. White
Grégoire Vincent
Henry Senyondo
University of Florida [Gainesville] (UF)
Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Source :
Methods in Ecology and Evolution, Methods in Ecology and Evolution, Wiley, 2020, 11 (12), pp.1743-1751. ⟨10.1111/2041-210X.13472⟩
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

Remote sensing of forested landscapes can transform the speed, scale, and cost of forest research. The delineation of individual trees in remote sensing images is an essential task in forest analysis. Here we introduce a new Python package, DeepForest, that detects individual trees in high resolution RGB imagery using deep learning.While deep learning has proven highly effective in a range of computer vision tasks, it requires large amounts of training data that are typically difficult to obtain in ecological studies. DeepForest overcomes this limitation by including a model pre-trained on over 30 million algorithmically generated crowns from 22 forests and fine-tuned using 10,000 hand-labeled crowns from 6 forests.The package supports the application of this general model to new data, fine tuning the model to new datasets with user labeled crowns, training new models, and evaluating model predictions. This simplifies the process of using and retraining deep learning models for a range of forests, sensors, and spatial resolutions.We illustrate the workflow of DeepForest using data from the National Ecological Observatory Network, a tropical forest in French Guiana, and street trees from Portland, Oregon.

Details

ISSN :
2041210X
Database :
OpenAIRE
Journal :
Methods in Ecology and Evolution, Methods in Ecology and Evolution, Wiley, 2020, 11 (12), pp.1743-1751. ⟨10.1111/2041-210X.13472⟩
Accession number :
edsair.doi.dedup.....18d0825313346593838302f3cef6c21a
Full Text :
https://doi.org/10.1101/2020.07.07.191551