Back to Search Start Over

Large time behavior for the fast diffusion equation with critical absorption

Authors :
Said Benachour
Philippe Laurençot
Razvan Gabriel Iagar
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Differential Equations, Journal of Differential Equations, 2016, 260, pp.8000-8024. ⟨10.1016/j.jde.2016.02.008⟩, www.elsevier.com/locate/jde, Journal of Differential Equations, Elsevier, 2016, 260, pp.8000-8024. ⟨10.1016/j.jde.2016.02.008⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; We study the large time behavior of nonnegative solutions to the Cauchy problem for a fast diffusion equation with critical zero order absorption$$\partial_{t}u-\Delta u^m+u^q=0 \quad \quad \hbox{in} \(0,\infty)\times\real^N\ ,$$with $m_c:=(N-2)_{+}/N < m < 1$ and $q=m+2/N$. Given an initial condition $u_0$ decaying arbitrarily fast at infinity, we show that the asymptotic behavior of the corresponding solution $u$ is given by a Barenblatt profile with a logarithmic scaling, thereby extending a previous result requiring a specific algebraic lower bound on $u_0$. A by-product of our analysis is the derivation of sharp gradient estimates and a universal lower bound, which have their own interest and hold true for general exponents $q > 1$.

Details

Language :
English
ISSN :
00220396 and 10902732
Database :
OpenAIRE
Journal :
Journal of Differential Equations, Journal of Differential Equations, 2016, 260, pp.8000-8024. ⟨10.1016/j.jde.2016.02.008⟩, www.elsevier.com/locate/jde, Journal of Differential Equations, Elsevier, 2016, 260, pp.8000-8024. ⟨10.1016/j.jde.2016.02.008⟩
Accession number :
edsair.doi.dedup.....18be002a70d77abfd3e69ee28e9c5b60
Full Text :
https://doi.org/10.1016/j.jde.2016.02.008⟩