Back to Search
Start Over
Large time behavior for the fast diffusion equation with critical absorption
- Source :
- Journal of Differential Equations, Journal of Differential Equations, 2016, 260, pp.8000-8024. ⟨10.1016/j.jde.2016.02.008⟩, www.elsevier.com/locate/jde, Journal of Differential Equations, Elsevier, 2016, 260, pp.8000-8024. ⟨10.1016/j.jde.2016.02.008⟩
- Publication Year :
- 2016
- Publisher :
- HAL CCSD, 2016.
-
Abstract
- International audience; We study the large time behavior of nonnegative solutions to the Cauchy problem for a fast diffusion equation with critical zero order absorption$$\partial_{t}u-\Delta u^m+u^q=0 \quad \quad \hbox{in} \(0,\infty)\times\real^N\ ,$$with $m_c:=(N-2)_{+}/N < m < 1$ and $q=m+2/N$. Given an initial condition $u_0$ decaying arbitrarily fast at infinity, we show that the asymptotic behavior of the corresponding solution $u$ is given by a Barenblatt profile with a logarithmic scaling, thereby extending a previous result requiring a specific algebraic lower bound on $u_0$. A by-product of our analysis is the derivation of sharp gradient estimates and a universal lower bound, which have their own interest and hold true for general exponents $q > 1$.
- Subjects :
- Zero order absorption
35B33, 35B40, 35B45, 35K67
Diffusion equation
Applied Mathematics
010102 general mathematics
Mathematical analysis
Mathematics::Analysis of PDEs
gradient estimates
01 natural sciences
Upper and lower bounds
large time behavior
010101 applied mathematics
Mathematics - Analysis of PDEs
fast diffusion
FOS: Mathematics
Initial value problem
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Absorption (logic)
0101 mathematics
lower bound
critical absorption
Analysis
Analysis of PDEs (math.AP)
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00220396 and 10902732
- Database :
- OpenAIRE
- Journal :
- Journal of Differential Equations, Journal of Differential Equations, 2016, 260, pp.8000-8024. ⟨10.1016/j.jde.2016.02.008⟩, www.elsevier.com/locate/jde, Journal of Differential Equations, Elsevier, 2016, 260, pp.8000-8024. ⟨10.1016/j.jde.2016.02.008⟩
- Accession number :
- edsair.doi.dedup.....18be002a70d77abfd3e69ee28e9c5b60
- Full Text :
- https://doi.org/10.1016/j.jde.2016.02.008⟩