Back to Search Start Over

An intestinal zinc sensor regulates food intake and developmental growth

Authors :
Mara K. N. Lawniczak
Théodore Grenier
Michaela Yuan
Tobias Warnecke
Jacob B Swadling
Irene Miguel-Aliaga
Lena van Giesen
Bhavna Chanana
Siamak Redhai
Yi-Fang Wang
Olena Riabinina
Nikolai Windbichler
Clare Pilgrim
Michaela Wilsch-Bräuninger
François Leulier
Tatiana Lopes
Richard A. Baines
Farah A. Dahalan
Wei-Hsiang Lin
Nicholas W. Bellono
Pedro Gaspar
Alexandra Milona
Paolo Capriotti
Nathan Dennison
MRC London Institute of Medical Sciences (LMC)
Inflammasome NLRP3 – NLRP3 Inflammasome
Centre International de Recherche en Infectiologie - UMR (CIRI)
École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Biotechnology and Biological Sciences Research Council (BBSRC)
Genome Research Limited
Commission of the European Communities
Centre International de Recherche en Infectiologie (CIRI)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature, Nature, Nature Publishing Group, 2020, 580 (7802), pp.263-268. ⟨10.1038/s41586-020-2111-5⟩, Nature, 2020, Vol.580(7802), pp.263-268 [Peer Reviewed Journal], Nature, 2020, 580 (7802), pp.263-268. ⟨10.1038/s41586-020-2111-5⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment1. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes1. Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes—interstitial cells—by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR–Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals—and, more generally, micronutrients—to energy homeostasis.

Details

Language :
English
ISSN :
00280836, 14764679, and 14764687
Database :
OpenAIRE
Journal :
Nature, Nature, Nature Publishing Group, 2020, 580 (7802), pp.263-268. ⟨10.1038/s41586-020-2111-5⟩, Nature, 2020, Vol.580(7802), pp.263-268 [Peer Reviewed Journal], Nature, 2020, 580 (7802), pp.263-268. ⟨10.1038/s41586-020-2111-5⟩
Accession number :
edsair.doi.dedup.....1879e3b42e781fb5cef40d026afff1e5
Full Text :
https://doi.org/10.1038/s41586-020-2111-5⟩