Back to Search
Start Over
Regularity for a class of quasilinear degenerate parabolic equations in the Heisenberg group
- Source :
- Mathematics in Engineering, Vol 3, Iss 1, Pp 1-31 (2021)
- Publication Year :
- 2021
- Publisher :
- American Institute of Mathematical Sciences, 2021.
-
Abstract
- We extend to the parabolic setting some of the ideas originated with Xiao Zhong's proof in [31] of the Holder regularity of $p-$harmonic functions in the Heisenberg group $\mathbb{H}^n$. Given a number $p\ge 2$, in this paper we establish the $C^{\infty}$ smoothness of weak solutions of a class of quasilinear PDE in $\mathbb{H}^n$ modeled on the equation $$?_t u = \sum_{i = 1}^{2n} X_i \bigg((1+|\nabla_0 u|^2)^{\frac{p-2}{2}} X_i u\bigg).$$
- Subjects :
- Pure mathematics
Class (set theory)
Mathematics::Classical Analysis and ODEs
01 natural sciences
Heisenberg group
Mathematics - Analysis of PDEs
0103 physical sciences
FOS: Mathematics
Nabla symbol
0101 mathematics
Mathematical Physics
Physics
Smoothness (probability theory)
Applied Mathematics
lcsh:T57-57.97
010102 general mathematics
Degenerate energy levels
Parabolic gradient estimates
16. Peace & justice
Parabolic partial differential equation
Parabolic gradient estimate
Sub elliptic p-Laplacian
lcsh:Applied mathematics. Quantitative methods
010307 mathematical physics
Analysis
Analysis of PDEs (math.AP)
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Mathematics in Engineering, Vol 3, Iss 1, Pp 1-31 (2021)
- Accession number :
- edsair.doi.dedup.....186c7c7a8926b35ad9e0266eefa957b4