Back to Search Start Over

Regularity for a class of quasilinear degenerate parabolic equations in the Heisenberg group

Authors :
Giovanna Citti
Nicola Garofalo
Luca Capogna
Capogna L.
Citti G.
Garofalo N.
Source :
Mathematics in Engineering, Vol 3, Iss 1, Pp 1-31 (2021)
Publication Year :
2021
Publisher :
American Institute of Mathematical Sciences, 2021.

Abstract

We extend to the parabolic setting some of the ideas originated with Xiao Zhong's proof in [31] of the Holder regularity of $p-$harmonic functions in the Heisenberg group $\mathbb{H}^n$. Given a number $p\ge 2$, in this paper we establish the $C^{\infty}$ smoothness of weak solutions of a class of quasilinear PDE in $\mathbb{H}^n$ modeled on the equation $$?_t u = \sum_{i = 1}^{2n} X_i \bigg((1+|\nabla_0 u|^2)^{\frac{p-2}{2}} X_i u\bigg).$$

Details

Language :
English
Database :
OpenAIRE
Journal :
Mathematics in Engineering, Vol 3, Iss 1, Pp 1-31 (2021)
Accession number :
edsair.doi.dedup.....186c7c7a8926b35ad9e0266eefa957b4