Back to Search Start Over

How well do U-Net-based segmentation trained on adult cardiac magnetic resonance imaging data generalize to rare congenital heart diseases for surgical planning?

Authors :
Animesh Tandon
Gerald F. Greil
Philipp Beerbaum
Sandy Engelhardt
Thomas Pickardt
Sven Koehler
Samir Sarikouch
Tarique Hussain
Ivo Wolf
Heiner Latus
Source :
Medical Imaging: Image-Guided Procedures
Publication Year :
2020
Publisher :
SPIE, 2020.

Abstract

Planning the optimal time of intervention for pulmonary valve replacement surgery in patients with the congenital heart disease Tetralogy of Fallot (TOF) is mainly based on ventricular volume and function according to current guidelines. Both of these two biomarkers are most reliably assessed by segmentation of 3D cardiac magnetic resonance (CMR) images. In several grand challenges in the last years, U-Net architectures have shown impressive results on the provided data. However, in clinical practice, data sets are more diverse considering individual pathologies and image properties derived from different scanner properties. Additionally, specific training data for complex rare diseases like TOF is scarce. For this work, 1) we assessed the accuracy gap when using a publicly available labelled data set (the Automatic Cardiac Diagnosis Challenge (ACDC) data set) for training and subsequent applying it to CMR data of TOF patients and vice versa and 2) whether we can achieve similar results when applying the model to a more heterogeneous data base. Multiple deep learning models were trained with four-fold cross validation. Afterwards they were evaluated on the respective unseen CMR images from the other collection. Our results confirm that current deep learning models can achieve excellent results (left ventricle dice of $0.951\pm{0.003}$/$0.941\pm{0.007}$ train/validation) within a single data collection. But once they are applied to other pathologies, it becomes apparent how much they overfit to the training pathologies (dice score drops between $0.072\pm{0.001}$ for the left and $0.165\pm{0.001}$ for the right ventricle).<br />Accepted for SPIE Medical Imaging 2020

Details

Database :
OpenAIRE
Journal :
Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling
Accession number :
edsair.doi.dedup.....1850dfe21796756575630daf9e2dd64f
Full Text :
https://doi.org/10.1117/12.2550651