Back to Search
Start Over
Moment polytopes for symplectic manifolds with monodromy
- Publication Year :
- 2005
- Publisher :
- arXiv, 2005.
-
Abstract
- A natural way of generalising Hamiltonian toric manifolds is to permit the presence of generic isolated singularities for the moment map. For a class of such ``almost-toric 4-manifolds'' which admits a Hamiltonian $S^1$-action we show that one can associate a group of convex polygons that generalise the celebrated moment polytopes of Atiyah, Guillemin-Sternberg. As an application, we derive a Duistermaat-Heckman formula demonstrating a strong effect of the possible monodromy of the underlying integrable system.<br />Comment: finally a revision of the 2003 preprint. 29 pages, 8 figures
- Subjects :
- Pure mathematics
Mathematics(all)
Moment polytope
Polytope
53D20
01 natural sciences
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
53D05,53D20,37J15,37J35
Mathematics::Symplectic Geometry
Mathematical Physics
Mathematics
Symplectic geometry
Mathematical Physics (math-ph)
16. Peace & justice
[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG]
Monodromy
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
symbols
Gravitational singularity
010307 mathematical physics
Hamiltonian (quantum mechanics)
[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]
Semi-toric
Integrable system
General Mathematics
FOS: Physical sciences
Lagrangian fibration
37J35
Duistermaat-Heckman
symbols.namesake
0103 physical sciences
FOS: Mathematics
0101 mathematics
[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]
53D05
37J15
57R45
Moment map
Completely integrable systems
010102 general mathematics
Regular polygon
Circle action
[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]
Algebra
Mathematics - Symplectic Geometry
Symplectic Geometry (math.SG)
Duistermaat–Heckman
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....1838bda5777c33f24870ecb9e7e69ace
- Full Text :
- https://doi.org/10.48550/arxiv.math/0504165