Back to Search Start Over

Moment polytopes for symplectic manifolds with monodromy

Authors :
San Vu Ngoc
Vu Ngoc, San
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Institut Fourier (IF )
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Publication Year :
2005
Publisher :
arXiv, 2005.

Abstract

A natural way of generalising Hamiltonian toric manifolds is to permit the presence of generic isolated singularities for the moment map. For a class of such ``almost-toric 4-manifolds'' which admits a Hamiltonian $S^1$-action we show that one can associate a group of convex polygons that generalise the celebrated moment polytopes of Atiyah, Guillemin-Sternberg. As an application, we derive a Duistermaat-Heckman formula demonstrating a strong effect of the possible monodromy of the underlying integrable system.<br />Comment: finally a revision of the 2003 preprint. 29 pages, 8 figures

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....1838bda5777c33f24870ecb9e7e69ace
Full Text :
https://doi.org/10.48550/arxiv.math/0504165