Back to Search
Start Over
Hydrogen Bonding Stiffens Peptide Amphiphile Supramolecular Filaments by Aza-Glycine Residues
- Source :
- Acta Biomaterialia. 135:87-99
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Peptide amphiphiles (PAs) are a class of molecules comprised of short amino acid sequences conjugated to hydrophobic moieties that may exhibit self-assembly in water into supramolecular structures. We investigate here how mechanical properties of hydrogels formed by PA supramolecular nanofibers are affected by hydrogen bond densities within their internal structure by substituting glycine for aza-glycine (azaG) residues. We found that increasing the number of PA molecules that contain azaG up to 5 mol% in PA supramolecular nanofibers increases their persistence length fivefold and decreases their diffusion coefficients as measured by fluorescence recovery after photobleaching. When these PAs are used to create hydrogels, their bulk storage modulus (G') was found to increase as azaG PA content in the supramolecular assemblies increases up to a value of 10 mol% and beyond this value a decrease was observed, likely due to diminished levels of nanofiber entanglement in the hydrogels as a direct result of increased supramolecular rigidity. Interestingly, we found that the bioactivity of the scaffolds toward dopaminergic neurons derived from induced pluripotent stem cells can be enhanced directly by persistence length independently of storage modulus. We hypothesize that this is due to interactions between the cells and the extracellular environment across different size scales: from filopodia adhering to individual nanofiber bundles to cell adhesion sites that interact with the hydrogel as a bulk substrate. Fine tuning of hydrogen bond density in self-assembling peptide biomaterials such as PAs provides an approach to control nanoscale stiffness as part of an overall strategy to optimize bioactivity in these supramolecular systems. supramolecular biomaterials. STATEMENT OF SIGNIFICANCE: Hydrogen bonding is an important driving force for the self-assembly of peptides in both biological and artificial systems. Here, we increase the amount of hydrogen bonding within self-assembled peptide amphiphile (PA) nanofibers by substituting glycine for an aza-glycine (azaG). We show that increasing the molar concentration of azaG increases the internal order of individual nanofibers and increases their persistence length. We also show that these changes are sufficient to increase survival and tyrosine hydroxylase expression in induced pluripotent stem cell-derived dopaminergic neurons cultured in 3D gels made of these materials. Our strategy of tuning the number of hydrogen bonds in a supramolecular assembly provides mechanical customization for 3D cell culture and tissue engineering.
- Subjects :
- Persistence length
Chemistry
Hydrogen bond
Glycine
Nanofibers
technology, industry, and agriculture
Biomedical Engineering
Supramolecular chemistry
Beta sheet
Hydrogels
Hydrogen Bonding
macromolecular substances
General Medicine
Biochemistry
Supramolecular assembly
Biomaterials
Nanofiber
Self-healing hydrogels
Biophysics
Peptide amphiphile
Peptides
Molecular Biology
Biotechnology
Subjects
Details
- ISSN :
- 17427061
- Volume :
- 135
- Database :
- OpenAIRE
- Journal :
- Acta Biomaterialia
- Accession number :
- edsair.doi.dedup.....18193e2e60ad98b57d175b7f5912a3c9
- Full Text :
- https://doi.org/10.1016/j.actbio.2021.08.044