Back to Search Start Over

A Dynamic, Architectural Plant Model Simulating Resource-dependent Growth

Authors :
Michaël Dingkuhn
Philippe de Reffye
Hong-Ping Yan
Mengzhen Kang
Eco-informatics (LIAMA)
Institut National de la Recherche Agronomique (INRA)-Chinese Academy of Sciences [Changchun Branch] (CAS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institute of Automation - Chinese Academy of Sciences-Centre National de la Recherche Scientifique (CNRS)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Modélisation de la croissance et de l'architecture des plantes (DIGIPLANTE)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Mathématiques Appliquées aux Systèmes - EA 4037 (MAS)
Ecole Centrale Paris-Ecole Centrale Paris
Département Amélioration des méthodes pour l'innovation scientifique (AMIS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Chinese Academy of Sciences [Changchun Branch] (CAS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institute of Automation - Chinese Academy of Sciences-Centre National de la Recherche Scientifique (CNRS)
Mathématiques Appliquées aux Systèmes - EA 4037 (MAS)
Ecole Centrale Paris-Ecole Centrale Paris-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Ecole Centrale Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Département Amélioration des méthodes pour l'innovation scientifique (Cirad- AMIS)
Source :
Annals of Botany, Annals of Botany, Oxford University Press (OUP), 2004, Annals of Botany, 93, pp.591-602, Annals of Botany, 2004, Annals of Botany, 93, pp.591-602
Publication Year :
2004
Publisher :
Oxford University Press (OUP), 2004.

Abstract

Accès sur le site éditeur : http://aob.oxfordjournals.org/cgi/content/abstract/93/5/591; Background and Aims Physiological and architectural plant models have originally been developed for different purposes and therefore have little in common, thus making combined applications dif®cult. There is, however, an increasing demand for crop models that simulate the genetic and resource-dependent variability of plant geometry and architecture, because man is increasingly able to transform plant production systems through combined genetic and environmental engineering. d Model GREENLAB is presented, a mathematical plant model that simulates interactions between plant structure and function. Dual-scale automaton is used to simulate plant organogenesis from germination to maturity on the basis of organogenetic growth cycles that have constant thermal time. Plant fresh biomass production is computed from transpiration, assuming transpiration ef®ciency to be constant and atmospheric demand to be the driving force, under non-limiting water supply. The fresh biomass is then distributed among expanding organs according to their relative demand. Demand for organ growth is estimated from allometric relationships (e.g. leaf surface to weight ratios) and kinetics of potential growth rate for each organ type. These are obtained through parameter optimization against empirical, morphological data sets by running the model in inverted mode. Potential growth rates are then used as estimates of relative sink strength in the model. These and other `hidden' plant parameters are calibrated using the non-linear, least-square method. d Key Results and Conclusions The model reproduced accurately the dynamics of plant growth, architecture and geometry of various annual and woody plants, enabling 3D visualization. It was also able to simulate the variability of leaf size on the plant and compensatory growth following pruning, as a result of internal competition for resources. The potential of the model's underlying concepts to predict the plant's phenotypic plasticity is discussed.

Details

ISSN :
10958290 and 03057364
Volume :
93
Database :
OpenAIRE
Journal :
Annals of Botany
Accession number :
edsair.doi.dedup.....177ec0e2d24879b9e6949eaab8c4a1a5