Back to Search Start Over

Differential regulation of staphylococcal virulence by the sensor kinase SaeS in response to neutrophil-derived stimuli

Authors :
Kyler B. Pallister
Cheryl L. Malone
Caralyn E. Flack
Jovanka M. Voyich
Alexander R. Horswill
Delisha D. Meishery
Oliwia W. Zurek
Source :
Proceedings of the National Academy of Sciences. 111
Publication Year :
2014
Publisher :
Proceedings of the National Academy of Sciences, 2014.

Abstract

Two-component systems (TCSs) are highly conserved across bacteria and are used to rapidly sense and respond to changing environmental conditions. The human pathogen Staphylococcus aureus uses the S. aureus exoprotein expression (sae) TCS to sense host signals and activate transcription of virulence factors essential to pathogenesis. Despite its importance, the mechanism by which the histidine kinase SaeS recognizes specific host stimuli is unknown. After mutagenizing the predicted extracellular loop of SaeS, we discovered one methionine residue (M31) was essential for the ability of S. aureus to transcribe sae target genes, including hla, lukAB/lukGH, and hlgA. This single M31A mutation also significantly reduced cytotoxicity in human neutrophils to levels observed in cells following interaction with ΔsaeS. Another important discovery was that mutation of two aromatic anchor residues (W32A and F33A) disrupted the normal basal signaling of SaeS in the absence of inducing signals, yet both mutant kinases had appropriate activation of effector genes following exposure to neutrophils. Although the transcriptional profile of aromatic mutation W32A was consistent with that of WT in response to human α-defensin 1, mutant kinase F33A did not properly transcribe the γ-toxin genes in response to this stimulus. Taken together, our results provide molecular evidence for how SaeS recognizes host signals and triggers activation of select virulence factors to facilitate evasion of innate immunity. These findings have important implications for signal transduction in prokaryotes and eukaryotes due to conservation of aromatic anchor residues across both of these domains and the important role they play in sensor protein structure and function.

Details

ISSN :
10916490 and 00278424
Volume :
111
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....175103bdc8ce3d0dbce6c7d7faa14577
Full Text :
https://doi.org/10.1073/pnas.1322125111