Back to Search Start Over

Hot spring frogs ( Buergeria japonica ) prefer cooler water to hot water

Authors :
Yoichi Sutoh
Kensuke Kobayashi
Quintin Lau
Takeshi Igawa
Shohei Komaki
Shigeru Saito
Claire T. Saito
Source :
Ecology and Evolution, Vol 10, Iss 17, Pp 9466-9473 (2020)
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

“Hot spring frog” is an informal name used for the Japanese stream tree frog (Buergeria japonica), which is widely distributed in Taiwan and the Ryukyu Archipelago in Japan. Some populations of the species are known to inhabit hot springs. However, water temperature can be extremely high around the sources of hot springs. Thus, it is questionable whether B. japonica selectively inhabits such dangerous environments. To address this question, we conducted a series of observations of water temperature preferences of a hot spring population of B. japonica in Kuchinoshima Island in Japan: (a) a field observation of tadpole density in water pools of different temperatures, (b) a field observation of water temperatures where adult males appear for breeding, and (c) an indoor observation of water temperatures selected by adult females for oviposition. As a result, tadpoles showed a higher density in cooler water. Adult males avoided water pools hotter than 37°C, and adult females selected cooler pools for oviposition. Camera records also showed that adult individuals tend to appear around cooler pools. Thus, we did not find any support for the hypothesis that hot spring frogs prefer hot water. Conversely, they apparently tended to prefer cooler water if it was available. Water temperatures around the sources of the hot spring exceed thermal tolerances of the species and could be a strong selective pressure on the population. Thus, the ability to sense and avoid lethal temperatures may be a key ecological and physiological characteristic for the species that inhabit hot springs.

Details

ISSN :
20457758
Volume :
10
Database :
OpenAIRE
Journal :
Ecology and Evolution
Accession number :
edsair.doi.dedup.....17458e2b5583c4ec05eee6d2140ca605