Back to Search Start Over

Association between biomechanical alterations and migratory ability of semaphorin-3A-treated thymocytes

Authors :
Givanildo Rodrigues da Silva
Salete Smaniotto
Marvin Paulo Lins
Samuel T. Souza
Navylla Candeia de Medeiros
Elaine Cristina Oliveira da Silva
Eduardo J. S. Fonseca
Source :
Biochimica et Biophysica Acta (BBA) - General Subjects. 1862:816-824
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Background Class 3 semaphorins are soluble proteins involved in cell adhesion and migration. Semaphorin-3A (Sema3A) was initially shown to be involved in neuronal guidance, and it has also been reported to be associated with immune disorders. Both Sema3A and its receptors are expressed by most immune cells, including monocytes, macrophages, and lymphocytes, and these proteins regulate cell function. Here, we studied the correlation between Sema3A-induced changes in biophysical parameters of thymocytes, and the subsequent repercussions on cell function. Methods Thymocytes from mice were treated in vitro with Sema3A for 30 min. Scanning electron microscopy was performed to assess cell morphology. Atomic force microscopy was performed to further evaluate cell morphology, membrane roughness, and elasticity. Flow cytometry and/or fluorescence microscopy were performed to assess the F-actin cytoskeleton and ROCK2. Cell adhesion to a bovine serum albumin substrate and transwell migration assays were used to assess cell migration. Results Sema3A induced filopodia formation in thymocytes, increased membrane stiffness and roughness, and caused a cortical distribution of the cytoskeleton without changes in F-actin levels. Sema3A-treated thymocytes showed reduced substrate adhesion and migratory ability, without changes in cell viability. In addition, Sema3A was able to down-regulate ROCK2. Conclusions Sema3A promotes cytoskeletal rearrangement, leading to membrane modifications, including increased stiffness and roughness. This effect in turn affects the adhesion and migration of thymocytes, possibly due to a reduction in ROCK2 expression. General significance Sema3A treatment impairs thymocyte migration due to biomechanical alterations in cell membranes.

Details

ISSN :
03044165
Volume :
1862
Database :
OpenAIRE
Journal :
Biochimica et Biophysica Acta (BBA) - General Subjects
Accession number :
edsair.doi.dedup.....1738e843caba2cd8251ab1bc3b8ec921
Full Text :
https://doi.org/10.1016/j.bbagen.2018.01.001