Back to Search Start Over

Supervised Learning Modelization and Segmentation of Cardiac Scar in Delayed Enhanced MRI

Authors :
Nico Lanconelli
Maurizio Bordone
Claudio Lamberti
Bruno Donini
James A. Rosengarten
Dario Turco
Giovana Gavidia
L. Lara
Nick Curzen
Javier Herrero
Cristiana Corsi
Miguel Ángel González Ballester
Eduardo Soudah
Frederic Perez
Rita Morisi
Sergio Vera
John M. Morgan
L. Lara
S. Vera
F. Perez
N. Lanconelli
R. Morisi
B. Donini
D. Turco
C. Corsi
C. Lamberti
G. Gavidia
M. Bordone
E. Soudah
N. Curzen
J. Rosengarten
J. Morgan
J. Herrero
M. A. González Ballester
Source :
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges ISBN: 9783642369605, STACOM
Publication Year :
2013
Publisher :
Springer Verlag, 2013.

Abstract

Delayed Enhancement Magnetic Resonance Imaging can be used to non-invasively differentiate viable from non-viable myocardium within the Left Ventricle in patients suffering from myocardial diseases. Automated segmentation of scarified tissue can be used to accurately quantify the percentage of myocardium affected. This paper presents a method for cardiac scar detection and segmentation based on supervised learning and level set segmentation. First, a model of the appearance of scar tissue is trained using a Support Vector Machines classifier on image-derived descriptors. Based on the areas detected by the classifier, an accurate segmentation is performed using a segmentation method based on level sets.

Details

Language :
English
ISBN :
978-3-642-36960-5
ISBNs :
9783642369605
Database :
OpenAIRE
Journal :
Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges ISBN: 9783642369605, STACOM
Accession number :
edsair.doi.dedup.....16cb80878db0040a8349facdc152766f