Back to Search Start Over

Mining and state-space modeling and verification of sub-networks from large-scale biomolecular networks

Authors :
Xiaohua Hu
Fang-Xiang Wu
Source :
BMC Bioinformatics, Vol 8, Iss 1, p 324 (2007), BMC Bioinformatics
Publication Year :
2007
Publisher :
Springer Science and Business Media LLC, 2007.

Abstract

Background Biomolecular networks dynamically respond to stimuli and implement cellular function. Understanding these dynamic changes is the key challenge for cell biologists. As biomolecular networks grow in size and complexity, the model of a biomolecular network must become more rigorous to keep track of all the components and their interactions. In general this presents the need for computer simulation to manipulate and understand the biomolecular network model. Results In this paper, we present a novel method to model the regulatory system which executes a cellular function and can be represented as a biomolecular network. Our method consists of two steps. First, a novel scale-free network clustering approach is applied to the large-scale biomolecular network to obtain various sub-networks. Second, a state-space model is generated for the sub-networks and simulated to predict their behavior in the cellular context. The modeling results represent hypotheses that are tested against high-throughput data sets (microarrays and/or genetic screens) for both the natural system and perturbations. Notably, the dynamic modeling component of this method depends on the automated network structure generation of the first component and the sub-network clustering, which are both essential to make the solution tractable. Conclusion Experimental results on time series gene expression data for the human cell cycle indicate our approach is promising for sub-network mining and simulation from large-scale biomolecular network.

Details

ISSN :
14712105
Volume :
8
Database :
OpenAIRE
Journal :
BMC Bioinformatics
Accession number :
edsair.doi.dedup.....16bc4b098249b15316139cafcb82a114
Full Text :
https://doi.org/10.1186/1471-2105-8-324