Back to Search Start Over

A tighter proof for CCA secure inner product functional encryption: Genericity meets efficiency

Authors :
Castagnos, Guilhem
Laguillaumie, Fabien
Tucker, Ida
Lithe and fast algorithmic number theory (LFANT)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Exact Computing (ECO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Institute IMDEA Software [Madrid]
SCUM (ref. RTI2018-102043-B-I00), Spanish Government
CRYPTOEPIC (ref. EUR2019-103816), Spanish Government
SECURITAS (ref. RED2018-102321-T), Spanish Government
BLOQUES (ref. S2018/TCS-4339), Madrid Regional Government
ANR-21-CE39-0006,SANGRIA,Calcul réparti sécurisé : Cryptographie, Combinatoire, Calcul Formel(2021)
European Project: 101001283,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC),ERC-2020-COG,PICOCRYPT(2021)
Source :
Theoretical Computer Science, Theoretical Computer Science, 2022, 914, pp.84-113. ⟨10.1016/j.tcs.2022.02.014⟩
Publication Year :
2022

Abstract

International audience; Inner product functional encryption (IPFE) is a primitive which produces, from a master secret key, decryption keys sk k associated to vectors k over some specified base ring. Decrypting an encryption of vector m with sk k only reveals . Benhamouda et al. [BBL17] provided a generic construction for CCA-secure IPFE from projective hash functions (PHFs), unfortunately their security reduction suffers an exponential loss. Their only instantiation capable of decrypting inner products of large sizes, which relies on the decisional composite residuosity (DCR) assumption, is impractical due to the large size of ciphertexts, decryption keys, and the prohibitive speed of the scheme. Our core contribution is a new approach to proving CCA security. Our constructions maintain the genericity of [BBL17], while our security proof relaxes the requirements on the underlying PHFs and gains in reduction tightness. We instantiate these constructions from the DCR assumption, an assumption in class groups (HSM CL) and the decision Diffie Hellman (DDH) assumption. Our CCA-secure constructions from DCR and HSM CL are the first such schemes to efficiently decrypt inner products of large size, improving by multiple orders of magnitude upon the work of [BBL17]. A single-core C implementation of these schemes shows that, for a 112 bit security, and 100−dimensional vectors, their DCR-based scheme takes 1h20min to encrypt, and over 5min to decrypt, whereas our slowest scheme takes 5.2s to encrypt and 0.5s to decrypt. Similarly a ciphertext for their scheme is of 283MB; those of our HSM CL-based scheme are of 30kB.

Details

ISSN :
03043975 and 18792294
Database :
OpenAIRE
Journal :
Theoretical Computer Science
Accession number :
edsair.doi.dedup.....16b23e9de4c6f5f42524fbdb54d2e409
Full Text :
https://doi.org/10.1016/j.tcs.2022.02.014