Back to Search Start Over

Visualization of ultrafast melting initiated from radiation-driven defects in solids

Authors :
Samuel T. Murphy
Zhijiang Chen
Xijie Wang
Siegfried Glenzer
Mianzhen Mo
Paul C. M. Fossati
Yongqiang Wang
Renkai Li
SLAC National Accelerator Laboratory (SLAC)
Stanford University
Engineering Department, Lancaster university
Lancaster University
Imperial College London
Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME)
Département de Physico-Chimie (DPC)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Materials Science and Technology Division [Los Alamos]
Los Alamos National Laboratory (LANL)
Source :
Science Advances, Science Advances, 2019, 5 (5), ⟨10.1126/sciadv.aaw0392⟩
Publication Year :
2019
Publisher :
American Association for the Advancement of Science, 2019.

Abstract

Radiation damage lowers the melting point of metal tungsten, an effect that needs to be reckoned with for fusion reactors.<br />Materials exposed to extreme radiation environments such as fusion reactors or deep spaces accumulate substantial defect populations that alter their properties and subsequently the melting behavior. The quantitative characterization requires visualization with femtosecond temporal resolution on the atomic-scale length through measurements of the pair correlation function. Here, we demonstrate experimentally that electron diffraction at relativistic energies opens a new approach for studies of melting kinetics. Our measurements in radiation-damaged tungsten show that the tungsten target subjected to 10 displacements per atom of damage undergoes a melting transition below the melting temperature. Two-temperature molecular dynamics simulations reveal the crucial role of defect clusters, particularly nanovoids, in driving the ultrafast melting process observed on the time scale of less than 10 ps. These results provide new atomic-level insights into the ultrafast melting processes of materials in extreme environments.

Details

Language :
English
ISSN :
23752548
Volume :
5
Issue :
5
Database :
OpenAIRE
Journal :
Science Advances
Accession number :
edsair.doi.dedup.....16aa223eba92f50f8cf04ffecc2b5714