Back to Search
Start Over
Applying Linked Data Technologies in the Social Sciences
- Source :
- Künstliche Intelligenz
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- In recent years Linked Open Data (LOD) has matured and gained acceptance across various communities and domains. Large potential of Linked Data technologies is seen for an application in scientific disciplines. In this article, we present use cases and applications for an application of Linked Data in the social sciences. They focus on (a) interlinking domain-specific information, and (b) linking social science data to external LOD sources (e.g. authority data) from other domains. However, several technical and research challenges arise, when applying Linked Data technologies to a scientific domain with its specific data, information needs and use cases. We discuss these challenges and show how they can be addressed. (author's abstract)
- Subjects :
- data bank
Computer science
Information needs
01 natural sciences
ddc:070
Datenorganisation
Information science
Information capture
Information and Documentation, Libraries, Archives
data access
information system
Sozialwissenschaft
Information und Dokumentation, Bibliotheken, Archive
information technology
Artificial Intelligence
social science
Informationstechnik
Information system
Datenspeicherung
0501 psychology and cognitive sciences
Applied research
Linked Open Data
LOD
Social science
künstliche Intelligenz
News media, journalism, publishing
information capture
Informationsgewinnung
data storage
anwendungsorientiert
business.industry
Datenzugang
010401 analytical chemistry
05 social sciences
Datenbank
Information technology
data organization
information science
Linked data
artificial intelligence
Data science
0104 chemical sciences
Data access
applied research
Informationssystem
Publizistische Medien, Journalismus,Verlagswesen
Informationswissenschaft
business
050104 developmental & child psychology
Subjects
Details
- ISSN :
- 16101987 and 09331875
- Volume :
- 30
- Database :
- OpenAIRE
- Journal :
- KI - Künstliche Intelligenz
- Accession number :
- edsair.doi.dedup.....16a38ba59d1a3e5e9abd242023c297a0
- Full Text :
- https://doi.org/10.1007/s13218-015-0416-6