Back to Search Start Over

Structural and Molecular Dynamics Analysis of Plant Serotonin N ‐Acetyltransferase Reveal an Acid/Base‐Assisted Catalysis in Melatonin Biosynthesis

Authors :
Yucheng Zhao
Youdong Xu
Yuhao Zhang
Xikai Liu
Zhixiong Zeng
Yuanze Zhou
Xinxin Chen
Lijing Liao
Biao Liu
Yan Guo
Source :
Angewandte Chemie. 133:12127-12133
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Serotonin N -acetyltransferase (SNAT) is the key rate-limiting enzyme in melatonin biosynthesis. SNAT mediates dual pathways of melatonin biosynthesis in plants by using serotonin and 5-methoxytryptamine (5-MT) as substrates, and a high reaction pH and temperature are essential to its activity. However, little is known of its underlying mechanisms. Herein, we present a detailed reaction mechanism of a SNAT from Oryza sativa through combined structural and molecular dynamics (MD) analysis. We report for the first time the crystal structures of plant SNAT in the apo and binary/ternary complex forms with acetyl-CoA (AcCoA), serotonin, and 5-MT. These structures reveal that Os SNAT exhibits a unique enzymatically active dimeric fold that is not found in all the known structures of arylalkylamine N-acetyltransferase (AANAT) family. The key residues W188, D189, D226, N220, and Y233 located around the active pocket have important role in catalysis which is subsequently confirmed by site-directed mutagenesis. Combined with MD simulations, we hypothesize a novel plausible catalytic mechanism in which D226 and Y233 function as catalytic base and acid during the acetyl-transfer reaction. This work provides a molecular framework for understanding the catalytic mechanisms of plant SNAT and has implications for future protein engineering and biocatalytic applications.

Details

ISSN :
15213757 and 00448249
Volume :
133
Database :
OpenAIRE
Journal :
Angewandte Chemie
Accession number :
edsair.doi.dedup.....165b2194b2153192c695f9292ff1b0b4
Full Text :
https://doi.org/10.1002/ange.202100992