Back to Search Start Over

Opa1 relies on cristae preservation and ATP synthase to curtail reactive oxygen species accumulation in mitochondria

Authors :
Mauro Corrado
Israel Manjarrés-Raza
Ruben Quintana-Cabrera
Juan P. Bolaños
Luca Scorrano
Carlos Vicente-Gutierrez
Fondazione Italiana per la Ricerca sul Cancro
Fondazione Umberto Veronesi
European Commission
Agencia Estatal de Investigación (España)
Instituto de Salud Carlos III
Fundación BBVA
Fundación Ramón Areces
Ministero dell'Istruzione, dell'Università e della Ricerca
Fondation Leducq
Muscular Dystrophy Association (US)
Fondazione Cariparo
Source :
Redox Biology : an official journal of the Society for Free Radical Biology and Medicine, Redox Biology, Vol 41, Iss, Pp 101944-(2021), Digital.CSIC. Repositorio Institucional del CSIC, instname, Redox Biology
Publication Year :
2021

Abstract

Reactive oxygen species (ROS) are a common product of active mitochondrial respiration carried in mitochondrial cristae, but whether cristae shape influences ROS levels is unclear. Here we report that the mitochondrial fusion and cristae shape protein Opa1 requires mitochondrial ATP synthase oligomers to reduce ROS accumulation. In cells fueled with galactose to force ATP production by mitochondria, cristae are enlarged, ATP synthase oligomers destabilized, and ROS accumulate. Opa1 prevents both cristae remodeling and ROS generation, without impinging on levels of mitochondrial antioxidant defense enzymes that are unaffected by Opa1 overexpression. Genetic and pharmacologic experiments indicate that Opa1 requires ATP synthase oligomerization and activity to reduce ROS levels upon a blockage of the electron transport chain. Our results indicate that the converging effect of Opa1 and mitochondrial ATP synthase on mitochondrial ultrastructure regulate ROS abundance to sustain cell viability.<br />Graphical abstract Image 1<br />Highlights • Mitochondrial ROS levels mirror changes in cristae shape. • F1FO-ATP synthase oligomerization and reversal link mitochondrial ultrastructure to ROS generation. • Disrupted F1FO-ATP synthase dimerization abolishes Opa1 ability to curtail mitochondrial ROS accumulation.

Details

Language :
English
Database :
OpenAIRE
Journal :
Redox Biology : an official journal of the Society for Free Radical Biology and Medicine, Redox Biology, Vol 41, Iss, Pp 101944-(2021), Digital.CSIC. Repositorio Institucional del CSIC, instname, Redox Biology
Accession number :
edsair.doi.dedup.....161586bad8cfc8eb4b5a0fc9274253ff