Back to Search
Start Over
The compressive properties of sandwich structures based on an egg-box core design
- Source :
- COMPOSITES PART B-ENGINEERING
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Lightweight cores, based on an egg-box core design, have been manufactured using a simple compression-moulding technique. Two types of composite prepreg were used to manufacture the core materials, these being a woven carbon fibre reinforced epoxy and a woven glass fibre reinforced epoxy. The resulting cores were of a high quality, exhibiting little or no wrinkling following the manufacturing procedure. Subsequent compression tests at quasi-static rates of loading showed that the compression strength of the core depended strongly on the level of constraint applied during testing, with sandwich panels based on composite skins bonded to an egg-box core offering a load-bearing capability that was more than double that of its unconstrained counterpart. The quasi-static compression strength of the carbon-based cores has been shown to be slightly higher than the glass fibre systems, particularly at higher core densities. Local splitting damage at cell joining regions and crushing of the cell of the egg-box structure was identified as the primary failure mechanism in the sandwich panels. Impact tests, conducted using a drop-weight impact tower, have shown that the compression strength of the egg-box cores is higher at dynamic rates of loading than at quasi-static rates. Here again, the local splitting and crushing was the primary mode of failure in the sandwich structures. Finally, the finite element technique has been used to model the mechanical response of these core designs under both quasi-static and impact loading testing conditions. Here, agreement between the predicted and observed responses was found to be good for both extremes of loading-rate.
- Subjects :
- Materials science
Mechanical Engineering
Glass fiber
Composite number
02 engineering and technology
Epoxy
Impact test
021001 nanoscience & nanotechnology
Compression (physics)
Industrial and Manufacturing Engineering
Core (optical fiber)
020303 mechanical engineering & transports
Compressive strength
0203 mechanical engineering
Mechanics of Materials
visual_art
Ceramics and Composites
visual_art.visual_art_medium
Composite material
0210 nano-technology
Sandwich-structured composite
Subjects
Details
- ISSN :
- 13598368
- Volume :
- 144
- Database :
- OpenAIRE
- Journal :
- Composites Part B: Engineering
- Accession number :
- edsair.doi.dedup.....1611eb8abd0566dba362963fc09824e3
- Full Text :
- https://doi.org/10.1016/j.compositesb.2018.03.007