Back to Search
Start Over
Micro computed tomography based finite element models for elastic and strength properties of 3D printed glass scaffolds
- Publication Year :
- 2021
-
Abstract
- In this study, the mechanical properties of glass scaffolds manufactured by robocasting are investigated through micro computed tomography ($$\mu -CT$$μ-CT) based finite element modeling. The scaffolds are obtained by printing fibers along two perpendicular directions on parallel layers with a$$90^\circ $$90∘tilting between two adjacent layers. A parametric study is first presented with the purpose to assess the effect of the major design parameters on the elastic and strength properties of the scaffold; the mechanical properties of the 3D printed scaffolds are eventually estimated by using the$$\mu -CT$$μ-CTdata with the aim of assessing the effect of defects on the final geometry which are intrinsic in the manufacturing process. The macroscopic elastic modulus and strength of the scaffold are determined by simulating a uniaxial compressive test along the direction which is perpendicular to the layers of the printed fibers. An iterative approach has been used in order to determine the scaffold strength. A partial validation of the computational model has been obtained through comparison of the computed results with experimental values presented in [10] on a ceramic scaffold having the same geometry. All the results have been presented as non-dimensional values. The finite element analyses have shown which of the selected design parameters have the major effect on the stiffness and strength, being the porosity and fiber shifting between adjacent layers the most important ones. The analyses carried out on the basis of the$$\mu -CT$$μ-CTdata have shown elastic modulus and strength which are consistent with that found on ideal geometry at similar macroscopic porosity.Graphic AbstractIn this work, elastic and strength properties of glass-ceramic Bone Tissue Engineering scaffolds manufactured by robocasting are investigated through micro-CT based finite element models. An incremental simulation using a multi-grid finite element solver has been implemented to perform a parametric study on the effect of the major geometrical parameters of the scaffold design as well as the effect. Eventually, the effect of the geometrical imperfections deriving from the 3D printing process has been investigated by means of micro-CT image-based models. The porosity and the shifting between adjacent layers play the dominant role in determing elasticity and strength of the scaffolds. The elastic and strength properties of 3D-printed real scaffold were assessed to be consistent those obtained from the idealized geometric models, at least for the subdomain used in this study.
- Subjects :
- Materials science
porosity
0206 medical engineering
Bioactive glass
Finite element model
Scaffold, porosity
μ- CT
Computational Mechanics
02 engineering and technology
Scaffold
medicine
Perpendicular
Ceramic
Composite material
Elasticity (economics)
Porosity
Elastic modulus
Parametric statistics
Mechanical Engineering
Stiffness
021001 nanoscience & nanotechnology
020601 biomedical engineering
Finite element method
visual_art
visual_art.visual_art_medium
3111 Biomedicine
medicine.symptom
0210 nano-technology
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....160d471680d3fe6f48cad8d38c8f4014