Back to Search Start Over

The Deep Bedrock in Rome, Italy: A New Constraint Based on Passive Seismic Data Analysis

Authors :
Giuseppe Di Giulio
S. Marcucci
Giorgia Carlucci
Giuliano Milana
Fabrizio Cara
Salomon Hailemikael
Maurizio Vassallo
Marcucci, S.
Milana, G.
Hailemikael, S.
Carlucci, G.
Cara, F.
Di Giulio, G.
Vassallo, M.
Publication Year :
2019

Abstract

Seismic resonance inside sedimentary basins severely influences ground shaking at the free surface in case of earthquakes. Starting from few observations of a low-frequency resonance in the historical center of Rome, Italy, we performed several single-station ambient vibration measures to verify and estimate the resonance frequency in a wide area of the city by Horizontal-to-Vertical spectral ratio method. We verified a stable low-frequency peak in the range 0.3–0.4Hz. Recordings of August 24th 2016, Mw 6.0 Amatrice earthquake, available both inside and outside the basin of Rome, confirm the presence of high-energy components at frequencies of 0.2–0.4Hz within the basin. These observations support the hypothesis of a deep seismic impedance contrast responsible for the low frequency resonance. To infer the depth range of subsoil deposits related to this impedance contrast, we analyzed ambient vibration data recorded by 2-D seismic arrays aiming at retrieving the shear-wave velocity structure up to relevant depths. To increase the investigation depth (up to 2000m), we jointly inverted for Rayleigh-waves dispersion and ellipticity curves and resonance frequency. The shear-wave velocity profile shows two main discontinuities at depths of about 500m and 1800m that can be related to the bottom of the Plio-Pleistocene filling of the Rome basin and to the top of the basal limestone formation, respectively. These results fill a gap of knowledge about the deep velocity structure in the city that may be helpful for ground-motion scenario studies.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....15f8b9769ce8be05b8843dfee71d4ee9