Back to Search
Start Over
Olivine dissolution and hydrous Mg carbonate and silicate precipitation in the presence of microbial consortium of photo-autotrophic and heterotrophic bacteria
- Source :
- Geochimica et cosmochimica acta. 2020. Vol. 268. P. 123-141
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- Olivine is an important mineral that controls the sequestration of atmospheric CO2 in the form of secondary carbonate minerals during chemical and biological weathering of mafic rocks on Earth. Despite significant efforts in characterization of olivine reactivity and coupled secondary mineral precipitation both in abiotic and biotic systems, little is known on olivine behavior in the presence of bacterial consortia, which are the dominant forms of microbial life impacting mineral reactivity in natural settings. To address this gap, we studied the interaction of olivine with a bacterial consortium composed of typical freshwater cyanobacterium Synechococcus sp. and heterotrophic aerobic Pseudomonas reactans, isolated from a CO2 storage site in Icelandic basalts. We quantified the impact of this consortium on the dissolution rate of olivine and we characterized the precipitation of secondary mineral phases while monitoring various biological (number of cells, bacterial biomass) and physicochemical (pH, Si, Mg, Ca, alkalinity, dissolved organic and inorganic carbon) parameters of the medium over a period of ∼21 days. Heterotrophic bacteria and their organic exometabolites enhanced the release of Mg and Si and produced leaching features (etch pits) at the olivine surface whereas cyanobacterial photosynthesis raised the pH and favored precipitation of hydrous Mg carbonates and silicates in the vicinity of the cells. During microbially-induced transformation of aquatic carbon, the latter was sequestered in the form of cyanobacterial biomass (about 66%) and their soluble organic exometabolites (11%), and stored as secondary Mg carbonates (23%). Overall, the impact of bacterial consortium is higher than that of individual species and may represent important and understudied biotically-controlled mechanism of CO2 sequestration in natural waters.
- Subjects :
- Olivine
010504 meteorology & atmospheric sciences
Chemistry
фотоавтотрофные бактерии
силикаты
Alkalinity
Carbonate minerals
Microbial consortium
engineering.material
010502 geochemistry & geophysics
01 natural sciences
микробный консорциум
chemistry.chemical_compound
Total inorganic carbon
Geochemistry and Petrology
Environmental chemistry
engineering
Carbonate
Autotroph
оливин
Mafic
карбонат магния
гетеротрофные бактерии
0105 earth and related environmental sciences
Subjects
Details
- ISSN :
- 00167037
- Volume :
- 268
- Database :
- OpenAIRE
- Journal :
- Geochimica et Cosmochimica Acta
- Accession number :
- edsair.doi.dedup.....15e2a98736a3fed4a5460fd10c0ca677
- Full Text :
- https://doi.org/10.1016/j.gca.2019.09.040