Back to Search Start Over

A Robust Method to Filter Various Types of Artifacts on Long Duration EEG Recordings

Authors :
Samuel Boudet
Laurent Peyrodie
Christian Vasseur
Philippe Gallois
Equipe de Recherche en Automatique et Systèmes Microélectronique (HEI-ERASM)
HEI
LAGIS-SI
Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS)
Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)
Saint Philibert (GHICL)
Université catholique de Lille (UCL)
Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Bioinformatics and Biomedical Engineering, ICBBE 2008, ICBBE 2008, May 2008, shangai, China. pp.2357-2360, ⟨10.1109/ICBBE.2008.922⟩
Publication Year :
2008
Publisher :
IEEE, 2008.

Abstract

International audience; EEG is a system used to measure electrical brain activity using multiple electrodes placed on the scalp. Unfortunately, the signals can be easily contaminated by noises called artifacts. These can be generated by various actions such as eye blinks, eye movements, muscle activities or small electrode movements. This paper presents a global artifact removal method corresponding to an evolution of the AFOP method (Adaptive Filtering by Optimal Projection) in order to improve its stability. This evolution automatically filters ocular, muscular and heart beat artifacts. The results are validated on long duration EEG recordings containing pathological activities. An expert analysis shows that the cerebral signal is well conserved while a lot of artifacts are removed.

Details

Database :
OpenAIRE
Journal :
2008 2nd International Conference on Bioinformatics and Biomedical Engineering
Accession number :
edsair.doi.dedup.....15c5720dd320d3fc460b99b844a51a0d