Back to Search
Start Over
Nondegeneracy of critical points of the mean curvature of the boundary for Riemannian manifolds
- Source :
- Journal of Fixed Point Theory and Applications. 14:71-78
- Publication Year :
- 2013
- Publisher :
- Springer Science and Business Media LLC, 2013.
-
Abstract
- Let $M$ be a compact smooth Riemannian manifold of finite dimension $n+1$ with boundary $\partial M$and $\partial M$ is a compact $n$-dimensional submanifold of $M$. We show that for generic Riemannian metric $g$, all the critical points of the mean curvature of $\partial M$ are nondegenerate.
- Subjects :
- Applied Mathematics
Prescribed scalar curvature problem
Mathematical analysis
Riemannian geometry
Riemannian manifold
Fundamental theorem of Riemannian geometry
symbols.namesake
Mathematics - Analysis of PDEs
Modeling and Simulation
FOS: Mathematics
symbols
Mathematics::Differential Geometry
Geometry and Topology
Sectional curvature
Exponential map (Riemannian geometry)
Mathematics::Symplectic Geometry
Ricci curvature
Analysis of PDEs (math.AP)
Mathematics
Scalar curvature
Subjects
Details
- ISSN :
- 16617746 and 16617738
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- Journal of Fixed Point Theory and Applications
- Accession number :
- edsair.doi.dedup.....15bf54797f40a7ee9b96e34aa0334ea3
- Full Text :
- https://doi.org/10.1007/s11784-013-0138-z