Back to Search Start Over

Machine learning in cardiovascular radiology: ESCR position statement on design requirements, quality assessment, current applications, opportunities, and challenges

Authors :
Jens Bremerich
Thomas Weikert
Marco Francone
Byoung Wook Choi
Luigi Natale
Birgitta K. Velthuis
Matthias Gutberlet
Konstantin Nikolaou
Bettina Baessler
Suhny Abbara
Rozemarijn Vliegenthart
Tim Leiner
Elie Mousseaux
Christian Loewe
Rodrigo Salgado
Claudia Prieto
Charles Peebles
Karen G. Ordovas
Elizabeth M. Hecht
​Basic and Translational Research and Imaging Methodology Development in Groningen (BRIDGE)
Cardiovascular Centre (CVC)
University of Zurich
Weikert, Thomas
Source :
European Radiology, European Radiology, 31, 3909-3922. SPRINGER, European radiology
Publication Year :
2020
Publisher :
Springer Berlin Heidelberg, 2020.

Abstract

Abstract Machine learning offers great opportunities to streamline and improve clinical care from the perspective of cardiac imagers, patients, and the industry and is a very active scientific research field. In light of these advances, the European Society of Cardiovascular Radiology (ESCR), a non-profit medical society dedicated to advancing cardiovascular radiology, has assembled a position statement regarding the use of machine learning (ML) in cardiovascular imaging. The purpose of this statement is to provide guidance on requirements for successful development and implementation of ML applications in cardiovascular imaging. In particular, recommendations on how to adequately design ML studies and how to report and interpret their results are provided. Finally, we identify opportunities and challenges ahead. While the focus of this position statement is ML development in cardiovascular imaging, most considerations are relevant to ML in radiology in general. Key Points • Development and clinical implementation of machine learning in cardiovascular imaging is a multidisciplinary pursuit. • Based on existing study quality standard frameworks such as SPIRIT and STARD, we propose a list of quality criteria for ML studies in radiology. • The cardiovascular imaging research community should strive for the compilation of multicenter datasets for the development, evaluation, and benchmarking of ML algorithms.

Details

Language :
English
ISSN :
14321084 and 09387994
Volume :
31
Issue :
6
Database :
OpenAIRE
Journal :
European Radiology
Accession number :
edsair.doi.dedup.....150df33ff6253698f18dc3d86e550e5f