Back to Search Start Over

Steganalysis with cover-source mismatch and a small learning database

Authors :
Jérôme Pasquet
Sandra Bringay
Marc CHAUMONT
Image & Interaction (ICAR)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
ADVanced Analytics for data SciencE (ADVANSE)
Université Paul-Valéry - Montpellier 3 (UPVM)
Source :
22nd European Signal Processing Conference, EUSIPCO: European Signal Processing Conference, EUSIPCO: European Signal Processing Conference, Sep 2014, Lisbon, Portugal. pp.2425-2429, HAL
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

International audience; Many different hypotheses may be chosen for modeling a steganography/steganalysis problem. In this paper, we look closer into the case in which Eve, the steganalyst, has partial or erroneous knowledge of the cover distribution. More precisely we suppose that Eve knows the algorithms and the payload size that has been used by Alice, the steganographer, but she ignores the images distribution. In this source-cover mismatch scenario, we demonstrate that an Ensemble Classifier with Features Selection (EC-FS) allows the steganalyst to obtain the best state-of-the-art performances, while requiring 100 times smaller training database compared to the previous state-of-the art approach. Moreover, we propose the islet approach in order to increase the classification performances.

Details

Language :
English
Database :
OpenAIRE
Journal :
22nd European Signal Processing Conference, EUSIPCO: European Signal Processing Conference, EUSIPCO: European Signal Processing Conference, Sep 2014, Lisbon, Portugal. pp.2425-2429, HAL
Accession number :
edsair.doi.dedup.....1505beeee2f9001c583a843e7c60bd6a