Back to Search Start Over

Microbial nanowires: type IV pili or cytochrome filaments?

Authors :
Fengbin Wang
Lisa Craig
Xing Liu
Christopher Rensing
Edward H. Egelman
Source :
Trends in Microbiology. 31:384-392
Publication Year :
2023
Publisher :
Elsevier BV, 2023.

Abstract

A dynamic field of study has emerged involving long-range electron transport by extracellular filaments in anaerobic bacteria, with Geobacter sulfurreducens being used as a model system. The interest in this topic stems from the potential uses of such systems in bioremediation, energy generation, and new bio-based nanotechnology for electronic devices. These conductive extracellular filaments were originally thought, based upon low-resolution observations of dried samples, to be type IV pili (T4P). However, the recently published atomic structure for the T4P from G. sulfurreducens, obtained by cryo-electron microscopy (cryo-EM), is incompatible with the numerous models that have been put forward for electron conduction. As with all high-resolution structures of T4P, the G. sulfurreducens T4P structure shows a partial melting of the α-helix that substantially impacts the aromatic residue positions such that they are incompatible with conductivity. Furthermore, new work using high-resolution cryo-EM shows that conductive filaments thought to be T4P are actually polymerized cytochromes, with stacked heme groups forming a continuous conductive wire, or extracellular DNA. Recent atomic structures of three different cytochrome filaments from G. sulfurreducens suggest that such polymers evolved independently on multiple occasions. The expectation is that such polymerized cytochromes may be found emanating from other anaerobic organisms.

Details

ISSN :
0966842X
Volume :
31
Database :
OpenAIRE
Journal :
Trends in Microbiology
Accession number :
edsair.doi.dedup.....14819fbd8102b6c359c7002162520c09
Full Text :
https://doi.org/10.1016/j.tim.2022.11.004