Back to Search
Start Over
Assessing Phonon Coherence Using Spectroscopy
- Source :
- Physical Review B, Physical Review B, 2023, 107 (15), pp.155426. ⟨10.1103/PhysRevB.107.155426⟩
- Publication Year :
- 2023
- Publisher :
- HAL CCSD, 2023.
-
Abstract
- As a fundamental physical quantity of thermal phonons, temporal coherence participates in a broad range of thermal and phononic processes, while a clear methodology for the measurement of phonon coherence is still lacking. In this Lettter, we derive a theoretical model for the experimental exploration of phonon coherence based on spectroscopy, which is then validated by comparison with Brillouin light scattering data and direct molecular dynamic simulations of confined modes in nanostructures. The proposed model highlights that confined modes exhibit a pronounced wavelike behavior characterized by a higher ratio of coherence time to lifetime. The dependence of phonon coherence on system size is also demonstrated from spectroscopy data. The proposed theory allows for reassessing data of conventional spectroscopy to yield coherence times, which are essential for the understanding and the estimation of phonon characteristics and heat transport in solids in general.<br />Comment: 4 pages, 3 figures
Details
- Language :
- English
- ISSN :
- 24699950 and 24699969
- Database :
- OpenAIRE
- Journal :
- Physical Review B, Physical Review B, 2023, 107 (15), pp.155426. ⟨10.1103/PhysRevB.107.155426⟩
- Accession number :
- edsair.doi.dedup.....1439a932ce71278124c98ec58ca73d66