Back to Search Start Over

A continuous optimization framework for hybrid system identification

Authors :
René Vidal
Fabien Lauer
Gérard Bloch
Machine Learning and Computational Biology (ABC)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)
Centre de Recherche en Automatique de Nancy (CRAN)
Université Henri Poincaré - Nancy 1 (UHP)-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Center for Imaging Science (CIS)
Johns Hopkins University (JHU)
architecture hybride et contraintes, ArHyCo, ANR-2008 SEGI 004 01-30011459,architecture hybride et contraintes, ArHyCo, ANR-2008 SEGI 004 01-30011459
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
ANR-08-SEGI-0004,ArHyCo,Architectures Hybrides et Contraintes(2008)
Source :
Automatica, Automatica, Elsevier, 2011, 47 (3), pp.608-613. ⟨10.1016/j.automatica.2011.01.020⟩, Automatica, 2011, 47 (3), pp.608-613. ⟨10.1016/j.automatica.2011.01.020⟩
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

International audience; We propose a new framework for hybrid system identification, which relies on continuous optimization. This framework is based on the minimization of a cost function that can be chosen as either the minimum or the product of loss functions. The former is inspired by traditional estimation methods, while the latter is inspired by recent algebraic and support vector regression approaches to hybrid system identification. In both cases, the identification problem is recast as a continuous optimization program involving only the real parameters of the model as variables, thus avoiding the use of discrete optimization. This program can be solved efficiently by using standard optimization methods even for very large data sets. In addition, the proposed framework easily incorporates robustness to different kinds of outliers through the choice of the loss function.

Details

Language :
English
ISSN :
00051098
Database :
OpenAIRE
Journal :
Automatica, Automatica, Elsevier, 2011, 47 (3), pp.608-613. ⟨10.1016/j.automatica.2011.01.020⟩, Automatica, 2011, 47 (3), pp.608-613. ⟨10.1016/j.automatica.2011.01.020⟩
Accession number :
edsair.doi.dedup.....14311eaf3df6670bb17a759780c2597b
Full Text :
https://doi.org/10.1016/j.automatica.2011.01.020⟩