Back to Search Start Over

Projective cocycles over SL(2,R) actions: measures invariant under the upper triangular group

Authors :
Amie Wilkinson
Alex Eskin
Christian Bonatti
Institut de Mathématiques de Bourgogne [Dijon] (IMB)
Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC)
Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)
Department of Mathematics [Chicago]
University of Chicago
National Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS)1402852
Source :
Asterisque, Asterisque, Société Mathématique de France, 2020, 415, pp.157-180. ⟨10.24033/ast.1103⟩
Publication Year :
2020
Publisher :
Societe Mathematique de France, 2020.

Abstract

We consider the action of $SL(2,\mathbb{R})$ on a vector bundle $\mathbf{H}$ preserving an ergodic probability measure $\nu$ on the base $X$. Under an irreducibility assumption on this action, we prove that if $\hat\nu$ is any lift of $\nu$ to a probability measure on the projectivized bunde $\mathbb{P}(\mathbf{H})$ that is invariant under the upper triangular subgroup, then $\hat \nu$ is supported in the projectivization $\mathbb{P}(\mathbf{E}_1)$ of the top Lyapunov subspace of the positive diagonal semigroup. We derive two applications. First, the Lyapunov exponents for the Kontsevich-Zorich cocycle depend continuously on affine measures, answering a question in [MMY]. Second, if $\mathbb{P}(\mathbf{V})$ is an irreducible, flat projective bundle over a compact hyperbolic surface $\Sigma$, with hyperbolic foliation $\mathcal{F}$ tangent to the flat connection, then the foliated horocycle flow on $T^1\mathcal{F}$ is uniquely ergodic if the top Lyapunov exponent of the foliated geodesic flow is simple. This generalizes results in [BG] to arbitrary dimension.<br />Comment: Minor corrections. 24 pages, 1 figure

Details

ISSN :
24925926 and 03031179
Volume :
415
Database :
OpenAIRE
Journal :
Astérisque
Accession number :
edsair.doi.dedup.....142e4e6dea145f40b401ffd92744b6f7