Back to Search
Start Over
Projective cocycles over SL(2,R) actions: measures invariant under the upper triangular group
- Source :
- Asterisque, Asterisque, Société Mathématique de France, 2020, 415, pp.157-180. ⟨10.24033/ast.1103⟩
- Publication Year :
- 2020
- Publisher :
- Societe Mathematique de France, 2020.
-
Abstract
- We consider the action of $SL(2,\mathbb{R})$ on a vector bundle $\mathbf{H}$ preserving an ergodic probability measure $\nu$ on the base $X$. Under an irreducibility assumption on this action, we prove that if $\hat\nu$ is any lift of $\nu$ to a probability measure on the projectivized bunde $\mathbb{P}(\mathbf{H})$ that is invariant under the upper triangular subgroup, then $\hat \nu$ is supported in the projectivization $\mathbb{P}(\mathbf{E}_1)$ of the top Lyapunov subspace of the positive diagonal semigroup. We derive two applications. First, the Lyapunov exponents for the Kontsevich-Zorich cocycle depend continuously on affine measures, answering a question in [MMY]. Second, if $\mathbb{P}(\mathbf{V})$ is an irreducible, flat projective bundle over a compact hyperbolic surface $\Sigma$, with hyperbolic foliation $\mathcal{F}$ tangent to the flat connection, then the foliated horocycle flow on $T^1\mathcal{F}$ is uniquely ergodic if the top Lyapunov exponent of the foliated geodesic flow is simple. This generalizes results in [BG] to arbitrary dimension.<br />Comment: Minor corrections. 24 pages, 1 figure
- Subjects :
- Projectivization
Pure mathematics
Mathematics::Dynamical Systems
General Mathematics
Triangular matrix
Vector bundle
nonuniform hyperbolicity
Dynamical Systems (math.DS)
quadratic-differentials
Lyapunov exponent
abelian differentials
surfaces
simplicity
teichmuller curves
01 natural sciences
spectrum
projective cocycles
symbols.namesake
0103 physical sciences
FOS: Mathematics
Ergodic theory
[MATH]Mathematics [math]
Mathematics - Dynamical Systems
0101 mathematics
Invariant (mathematics)
Mathematics
Probability measure
010102 general mathematics
Lyapunov exponents
criterion
parabolic group actions
Horocycle
symbols
moduli spaces
37C40, 37A05
Mathematics::Differential Geometry
010307 mathematical physics
Invariant measures
zero lyapunov exponents
Subjects
Details
- ISSN :
- 24925926 and 03031179
- Volume :
- 415
- Database :
- OpenAIRE
- Journal :
- Astérisque
- Accession number :
- edsair.doi.dedup.....142e4e6dea145f40b401ffd92744b6f7