Back to Search Start Over

Comparison of Stress and Strain Distribution Around Splinted and Nonsplinted 6-mm Short Implants in Posterior Mandible: A Finite Element Analysis Study

Authors :
Shahrzad Beheshti
Amir Mahmoudi Motlagh
Reza Amid
Mansour Meimandi
Mohammad Reza Talebi Ardakani
Source :
Implant dentistry. 27(1)
Publication Year :
2018

Abstract

Purpose This study was designed to compare the biomechanical performance of splinted and nonsplinted short implants, in the posterior mandible, using finite element analysis. Materials and methods Three-dimensional models of short implants with 2 different diameters (4 × 6 mm or 5 × 6 mm) were scanned, and CATIA (R21) was used to simulate the model of an edentulous lower jaw. Experimental groups were designed as follows: (1) D4L6-splinted (three 4 × 6-mm splinted implants), (2) D4L6-nonsplinted, (3) D5L6-splinted, and (4) D5L6-nonsplinted. A 100 N load was applied, and stress and strain values in surrounding bone were analyzed in specific nodes using ANSYS software (16.1). Results The maximum stress values under axial load were found in D5L6-splinted model, and under oblique load, D5L6-nonsplinted model had the maximum stress values. Under axial load, D4L6-splinted model showed maximum strain values, but when oblique load was applied, D4L6-nonsplinted model had the maximum strain values. Conclusion Splinting adjacent short implants may provide less bone strain and stress, especially at the presence of lateral forces. Increasing the implant diameter may be effective in strain reduction, but does not seem to reduce the bone stress, regardless of the direction of the load applied.

Details

ISSN :
15382982
Volume :
27
Issue :
1
Database :
OpenAIRE
Journal :
Implant dentistry
Accession number :
edsair.doi.dedup.....14150ca8f76a78871e9d8bcff559fe7d