Back to Search Start Over

Bioreducible, branched poly(β-amino ester)s mediate anti-inflammatory ICAM-1 siRNA delivery against myocardial ischemia reperfusion (IR) injury

Authors :
Qiujun Liang
Yongbing Chen
Xiao Wang
Qiurong Deng
Rongying Zhu
Yiming Mao
Rujing Zhang
Shanzhou Duan
Lichen Yin
Source :
Biomaterials Science. 8:3856-3870
Publication Year :
2020
Publisher :
Royal Society of Chemistry (RSC), 2020.

Abstract

siRNA-mediated RNA interference (RNAi) against inflammation-related genes provides a promising modality for the treatment of myocardial ischemia reperfusion (IR) injury, and its success is critically dependent on the development of efficient yet safe siRNA delivery vehicles. Herein, we developed a bioreducible, branched poly(β-amino ester) with built-in redox-responsive domains (BPAE-SS) for the effective ICAM-1 siRNA delivery into injured rat cardiac microvascular endothelial cells (RCMECs). The branched BPAE-SS with a multivalent structure afforded potent siRNA binding affinity compared to its linear analogue, while upon internalization into RCMECs it was instantaneously degraded by intracellular glutathione (GSH) into small segments to mediate "on-demand" siRNA release and diminish the toxicity of post-transfection materials. By synchronizingly overcoming these critical barriers, BPAE-SS mediated remarkable ICAM-1 knockdown in IR-injured rats at 400 μg siRNA per kg via single i.v. injection, and subsequently suppressed myocardial inflammation, apoptosis, and fibrosis to recover the cardiac function. This study therefore provides a unique delivery system that can address the multiple critical challenges against non-viral siRNA delivery, and the potent therapeutic efficacy of BPAE-SS-mediated ICAM-1 silencing provides a promising strategy for the anti-inflammatory treatment of myocardial IR injury.

Details

ISSN :
20474849 and 20474830
Volume :
8
Database :
OpenAIRE
Journal :
Biomaterials Science
Accession number :
edsair.doi.dedup.....140e0318bfe0d530daacc14e457524b2