Back to Search Start Over

Real dimension of the Lie algebra of S-skew-Hermitian matrices

Authors :
Jonathan Caalim
Yu-ichi Tanaka
Source :
University of Wyoming Open Journals
Publication Year :
2022
Publisher :
University of Wyoming Libraries, 2022.

Abstract

Let $M_n(\mathbb{C})$ be the set of $n\times n$ matrices over the complex numbers. Let $S \in M_n(\mathbb{C})$. A matrix $A\in M_n(\mathbb{C})$ is said to be $S$-skew-Hermitian if $SA^*=-AS$ where $A^*$ is the conjugate transpose of $A$. The set $\mathfrak{u}_S$ of all $S$-skew-Hermitian matrices is a Lie algebra. In this paper, we give a real dimension formula for $\mathfrak{u}_S$ using the Jordan block decomposition of the cosquare $S(S^*)^{-1}$ of $S$ when $S$ is nonsingular.

Details

ISSN :
10813810
Database :
OpenAIRE
Journal :
The Electronic Journal of Linear Algebra
Accession number :
edsair.doi.dedup.....13c3443d0939677e9695f6b864aa6df2