Back to Search Start Over

A Random-Line-Graph Approach to Overlapping Line Segments

Authors :
Lucas Böttcher
Source :
Journal of Complex Networks. 8
Publication Year :
2020
Publisher :
Oxford University Press (OUP), 2020.

Abstract

We study graphs that are formed by independently-positioned needles (i.e., line segments) in the unit square. To mathematically characterize the graph structure, we derive the probability that two line segments intersect and determine related quantities such as the distribution of intersections, given a certain number of line segments $N$. We interpret intersections between line segments as nodes and connections between them as edges in a spatial network that we refer to as random-line graph (RLG). Using methods from the study of random-geometric graphs, we show that the probability of RLGs to be connected undergoes a sharp transition if the number of lines exceeds a threshold $N^*$.<br />7 pages, 4 figures

Details

ISSN :
20511329
Volume :
8
Database :
OpenAIRE
Journal :
Journal of Complex Networks
Accession number :
edsair.doi.dedup.....1398054ba829dd95a24f96529106e432
Full Text :
https://doi.org/10.1093/comnet/cnaa029