Back to Search Start Over

Strong magnetic exchange and frustrated ferrimagnetic order in a weberite-type inorganic–organic hybrid fluoride

Authors :
Jean-Marc Greneche
Vanessa Pimenta
Jérôme Lhoste
M. Albino
Vincent Maisonneuve
C. Payen
Lucy Clark
I. da Silva
Marc Leblanc
Philip Lightfoot
University of St Andrews. EaSTCHEM
University of St Andrews. School of Chemistry
University of Liverpool
Institut des Molécules et Matériaux du Mans (IMMM)
Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
School of Chemistry [University of St Andrews]
University of St Andrews [Scotland]
STFC Rutherford Appleton Laboratory (RAL)
Science and Technology Facilities Council (STFC)
Institut des Matériaux Jean Rouxel (IMN)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Ecole Polytechnique de l'Université de Nantes (EPUN)
Université de Nantes (UN)-Université de Nantes (UN)
Source :
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Royal Society, The, 2019, 377 (2149), pp.20180224. ⟨10.1098/rsta.2018.0224⟩, Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences
Publication Year :
2019
Publisher :
The Royal Society, 2019.

Abstract

We combine powder neutron diffraction, magnetometry and 57 Fe Mössbauer spectrometry to determine the nuclear and magnetic structures of a strongly interacting weberite-type inorganic–organic hybrid fluoride, Fe 2 F 5 (H taz ). In this structure, Fe 2+ and Fe 3+ cations form magnetically frustrated hexagonal tungsten bronze layers of corner-sharing octahedra. Our powder neutron diffraction data reveal that, unlike its purely inorganic fluoride weberite counterparts which adopt a centrosymmetric Imma structure, the room-temperature nuclear structure of Fe 2 F 5 (H taz ) is best described by a non-centrosymmetric Ima 2 model with refined lattice parameters a = 9.1467(2) Å, b = 9.4641(2) Å and c = 7.4829(2) Å. Magnetic susceptibility and magnetization measurements reveal that strong antiferromagnetic exchange interactions prevail in Fe 2 F 5 (H taz ) leading to a magnetic ordering transition at T N = 93 K. Analysis of low-temperature powder neutron diffraction data indicates that below T N , the Fe 2+ sublattice is ferromagnetic, with a moment of 4.1(1) µ B per Fe 2+ at 2 K, but that an antiferromagnetic component of 0.6(3) µ B cants the main ferromagnetic component of Fe 3+ , which aligns antiferromagnetically to the Fe 2+ sublattice. The zero-field and in-field Mössbauer spectra give clear evidence of an excess of high-spin Fe 3+ species within the structure and a non-collinear magnetic structure. This article is part of the theme issue ‘Mineralomimesis: natural and synthetic frameworks in science and technology’.

Details

ISSN :
14712962 and 1364503X
Volume :
377
Database :
OpenAIRE
Journal :
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Accession number :
edsair.doi.dedup.....138e6231d57363741ba3f5eb3293ca21