Back to Search Start Over

Role of transglutaminase 2 in A 1 adenosine receptor- and β 2 -adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells

Authors :
Carl P. Nelson
Falguni S. Vyas
John M. Dickenson
Source :
European Journal of Pharmacology. 819:144-160
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A1 adenosine receptor and β2-adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A1 adenosine receptor and β2-adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8 h hypoxia (1% O2) followed by 18 h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N6-cyclopentyladenosine (CPA; A1 adenosine receptor agonist), formoterol (β2-adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (Gi/o-protein inhibitor), DPCPX (A1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β2-adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A1 adenosine receptor and β2-adrenoceptor-induced protection against simulated hypoxia/reoxygenation occurs in a TG2 and Gi/o-protein dependent manner in H9c2 cardiomyoblasts.

Details

ISSN :
00142999
Volume :
819
Database :
OpenAIRE
Journal :
European Journal of Pharmacology
Accession number :
edsair.doi.dedup.....135c79035ff23421878fa6647a188a42
Full Text :
https://doi.org/10.1016/j.ejphar.2017.11.049