Back to Search Start Over

Immune networks modeled by replicator equations

Authors :
Peter F. Stadler
Alan S. Perelson
Peter Schuster
Source :
Scopus-Elsevier

Abstract

In order to evaluate the role of idiotypic networks in the operation of the immune system a number of mathematical models have been formulated. Here we examine a class of B-cell models in which cell proliferation is governed by a non-negative, unimodal, symmetric response function f (h), where the field h summarizes the effect of the network on a single clone. We show that by transforming into relative concentrations, the B-cell network equations can be brought into a form that closely resembles the replicator equation. We then show that when the total number of clones in a network is conserved, the dynamics of the network can be represented by the dynamics of a replicator equation. The number of equilibria and their stability are then characterized using methods developed for the study of second-order replicator equations. Analogies with standard Lotka-Volterra equations are also indicated. A particularly interesting result of our analysis is the fact that even though the immune network equations are not second-order, the number and stability of their equilibria can be obtained by a superposition of second-order replicator systems. As a consequence, the problem of finding all of the equilibrium points of the nonlinear network equations can be reduced to solving linear equations.

Details

Database :
OpenAIRE
Journal :
Scopus-Elsevier
Accession number :
edsair.doi.dedup.....134e194f53d1bd21a5083db635529250