Back to Search
Start Over
AGL(m, 2) Acting on R(r, m)/R(s, m)
- Source :
- Journal of Algebra. 171(3):921-938
- Publication Year :
- 1995
- Publisher :
- Elsevier BV, 1995.
-
Abstract
- Let AGL(m, F) be the general affine group of order m over an arbitrary field F. We determine the conjugacy classes of AGL(m, F). When F = GF(q), we also determine the sizes of the centralizers of the elements in AGL(m, F). The group AGL(m, 2) (= AGL(m, GF(2))) acts on each of the Reed-Muller codes of length 2m as an automorphism group. We denote the rth order Reed-Muller code of length 2m by R(r, m) and prove that under the action of AGL(m, 2) the number of orbits of R(t, m)/R(s, m) is equal to that of R(m − (s + 1), m)/R(m − (t + 1), m) for −1 ≤ s < t ≤ m. We also compute the numbers of AGL(m, 2)-orbits of R(t, m)/R(s, m) for m = 6, 7, and −1 ≤ s < t ≤ m.
Details
- ISSN :
- 00218693
- Volume :
- 171
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....13409954ffea16efe45f8304cc7cb969
- Full Text :
- https://doi.org/10.1006/jabr.1995.1043