Back to Search Start Over

Southern African summer-rainfall variability, and its teleconnections, on interannual to interdecadal timescales in CMIP5 models

Authors :
Moussa Sidibe
Jonathan Eden
Julien Crétat
Mark New
Mathieu Rouault
Damian Lawler
Bastien Dieppois
Benjamin Pohl
Centre for Agroecology, Water and Resilience
Coventry University
Department of Oceanography [Cape Town]
University of Cape Town
School of Geography, Earth and Environmental Sciences [Birmingham]
University of Birmingham [Birmingham]
Biogéosciences [UMR 6282] [Dijon] (BGS)
Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)
Institut Pierre-Simon-Laplace (IPSL (FR_636))
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
African Climate and Development Initiative
Nansen-Tutu Center for Marine Environmental Research
Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
École normale supérieure - Paris (ENS Paris)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Centre for Agroecology, Water and Resilience (CAWR)
Biogéosciences [UMR 6282] (BGS)
Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS-PSL)
Source :
Climate Dynamics, Climate Dynamics, Springer Verlag, 2019, 53 (5-6), pp.3505-3527. ⟨10.1007/s00382-019-04720-5⟩, Climate Dynamics, 2019, 53 (5-6), pp.3505-3527. ⟨10.1007/s00382-019-04720-5⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

23 pages; International audience; This study provides the first assessment of CMIP5 model performances in simulating southern Africa (SA) rainfall variability in austral summer (Nov–Feb), and its teleconnections with large-scale climate variability at different timescales. Observed SA rainfall varies at three major timescales: interannual (2–8 years), quasi-decadal (8–13 years; QDV) and interdecadal (15–28 years; IDV). These rainfall fluctuations are, respectively, associated with El Niño Southern Oscillation (ENSO), the Interdecadal Pacific Oscillation (IPO) and the Pacific Decadal Oscillation (PDO), interacting with climate anomalies in the South Atlantic and South Indian Ocean. CMIP5 models produce their own variability, but perform better in simulating interannual rainfall variability, while QDV and IDV are largely underestimated. These limitations can be partly explained by spatial shifts in core regions of SA rainfall variability in the models. Most models reproduce the impact of La Niña on rainfall at the interannual scale in SA, in spite of limitations in the representation of ENSO. Realistic links between negative IPO are found in some models at the QDV scale, but very poor performances are found at the IDV scale. Strong limitations, i.e. loss or reversal of these teleconnections, are also noted in some simulations. Such model errors, however, do not systematically impact the skill of simulated rainfall variability. This is because biased SST variability in the South Atlantic and South Indian Oceans strongly impact model skills by modulating the impact of Pacific modes of variability. Using probabilistic multi-scale clustering, model uncertainties in SST variability are primarily driven by differences from one model to another, or comparable models (sharing similar physics), at the global scale. At the regional scale, i.e. SA rainfall variability and associated teleconnections, while differences in model physics remain a large source of uncertainty, the contribution of internal climate variability is increasing. This is particularly true at the QDV and IDV scales, where the individual simulations from the same model tend to differentiate, and the sampling error increase.

Details

Language :
English
ISSN :
09307575 and 14320894
Database :
OpenAIRE
Journal :
Climate Dynamics, Climate Dynamics, Springer Verlag, 2019, 53 (5-6), pp.3505-3527. ⟨10.1007/s00382-019-04720-5⟩, Climate Dynamics, 2019, 53 (5-6), pp.3505-3527. ⟨10.1007/s00382-019-04720-5⟩
Accession number :
edsair.doi.dedup.....13018aff00c61c56adf06a550336a0b7
Full Text :
https://doi.org/10.1007/s00382-019-04720-5⟩