Back to Search Start Over

Lattice defects induce microtubule self-renewal

Authors :
Ariane Abrieu
Laura Schaedel
Laurent Blanchoin
Charlotte Aumeier
Manuel Théry
Denis Chrétien
Sarah Triclin
Karin John
Jérémie Gaillard
CytoMorphoLab
Physiologie cellulaire et végétale (LPCV)
Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Institut de Génétique et Développement de Rennes (IGDR)
Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)
Centre de recherche en Biologie Cellulaire (CRBM)
Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)
Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
French National Research Agency (ANR) ANR-16-CE11-0017-01 ANR-12-BSV5-0004-01 ANR-14-CE09-0014-02 ANR-18-CE13-0001
Human Frontier Science Program RGY0088
European Research Council (ERC) 771599 741773
Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
Centre de recherche en Biologie cellulaire de Montpellier (CRBM)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
ANR-18-CE13-0001,APERTuRe,Une nouvelle perspective sur la régulation des microtubules(2018)
Laboratoire de physiologie cellulaire végétale (LPCV)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de physiologie cellulaire végétale (LPCV)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Physiologie cellulaire et végétale (LPCV)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut National de la Recherche Agronomique (INRA)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature Physics, Nature Physics, Nature Publishing Group, 2019, 15 (8), pp.830-838. ⟨10.1038/s41567-019-0542-4⟩, Nature Physics, 2019, 15 (8), pp.830-838. ⟨10.1038/s41567-019-0542-4⟩, Nature Physics, Nature Publishing Group, 2019, 15 (15), pp.830-838. ⟨10.1038/s41567-019-0542-4⟩, Nature physics
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

The dynamic instability of microtubules is powered by the addition and removal of tubulin dimers at the ends of the microtubule. Apart from the end, the microtubule shaft is not considered to be dynamic. However recent evidence suggests that free dimers can be incorporated into the shaft of a microtubule damaged by mechanical stress. Here we explored whether dimer exchange was a core property of the microtubule lattice independently of any external constraint. We found that dimers can be removed from and incorporated into the lattice at sites along the microtubule shaft. Furthermore, we showed by experiment and by modeling that rapid dimer renewal requires structural defects in the lattice, which occur in fast growing microtubules. Hence long-lived microtubules have the capacity to self-renew despite their apparent stability and thereby can potentially regulate signaling pathways and structural rearrangements associated with tubulin-dimer exchange at sites along their entire length.

Details

Language :
English
ISSN :
17452473 and 14764636
Database :
OpenAIRE
Journal :
Nature Physics, Nature Physics, Nature Publishing Group, 2019, 15 (8), pp.830-838. ⟨10.1038/s41567-019-0542-4⟩, Nature Physics, 2019, 15 (8), pp.830-838. ⟨10.1038/s41567-019-0542-4⟩, Nature Physics, Nature Publishing Group, 2019, 15 (15), pp.830-838. ⟨10.1038/s41567-019-0542-4⟩, Nature physics
Accession number :
edsair.doi.dedup.....12f64667774a939d2da731b8f49214c2