Back to Search Start Over

A subduction influence on ocean ridge basalts outside the Pacific subduction shield

Authors :
Zhe Chen
Charles H. Langmuir
Yue Cai
Alexandra Yang Yang
Steven L. Goldstein
Peter J. Michael
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-10 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

The plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.<br />We discover a pervasive subduction influence in the Arctic, Atlantic and Indian mantle, which is nearly absent in the Pacific mantle. Such a hemispheric-scale upper mantle heterogeneity reflects the control of a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....12e7803a268e410ec47e755916d0ed0b