Back to Search
Start Over
Super-Resolving Quantum Radar: Coherent-State Sources with Homodyne Detection Suffice to Beat the Diffraction Limit
- Publication Year :
- 2013
- Publisher :
- arXiv, 2013.
-
Abstract
- There has been much recent interest in quantum metrology for applications to sub-Raleigh ranging and remote sensing such as in quantum radar. For quantum radar, atmospheric absorption and diffraction rapidly degrades any actively transmitted quantum states of light, such as N00N states, so that for this high-loss regime the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the linear Beer's law for classical radar attenuation, and which provide sensitivity at the shot-noise limit in the returned power. We show that coherent radar radiation sources, coupled with a quantum homodyne detection scheme, provide both longitudinal and angular super-resolution much below the Rayleigh diffraction limit, with sensitivity at shot-noise in terms of the detected photon power. Our approach provides a template for the development of a complete super-resolving quantum radar system with currently available technology.<br />Comment: 23 pages, content is identical to published version
- Subjects :
- Diffraction
Physics
Quantum Physics
Photon
business.industry
Beat (acoustics)
General Physics and Astronomy
FOS: Physical sciences
law.invention
symbols.namesake
Optics
Homodyne detection
law
Quantum state
symbols
Quantum metrology
Coherent states
Quantum radar
Rayleigh scattering
Radar
business
Quantum Physics (quant-ph)
Quantum
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....12a66d5a8e790a4f30f623e585b14b9b
- Full Text :
- https://doi.org/10.48550/arxiv.1305.4162