Back to Search
Start Over
Estimating the Dimension of an Inertial Manifold from Unstable Periodic Orbits
- Source :
- Physical Review Letters, Physical Review Letters, American Physical Society, 2016, 117, pp.024101. ⟨10.1103/PhysRevLett.117.024101⟩, Physical Review Letters, 2016, 117, pp.024101. ⟨10.1103/PhysRevLett.117.024101⟩
- Publication Year :
- 2016
- Publisher :
- HAL CCSD, 2016.
-
Abstract
- We provide numerical evidence that a finite-dimensional inertial manifold on which the dynamics of a chaotic dissipative dynamical system lives can be constructed solely from the knowledge of a set of unstable periodic orbits. In particular, we determine the dimension of the inertial manifold for Kuramoto-Sivashinsky system, and find it to be equal to the `physical dimension' computed previously via the hyperbolicity properties of covariant Lyapunov vectors.<br />Comment: 6 pages, 3 pdf figures, uses revtex4
- Subjects :
- Physics
[PHYS]Physics [physics]
Invariant manifold
General Physics and Astronomy
Periodic point
FOS: Physical sciences
Stable manifold theorem
Nonlinear Sciences - Chaotic Dynamics
01 natural sciences
010305 fluids & plasmas
Homoclinic connection
Nonlinear Sciences::Chaotic Dynamics
Classical mechanics
0103 physical sciences
Dissipative system
Covariant transformation
Chaotic Dynamics (nlin.CD)
010306 general physics
Dynamical system (definition)
Center manifold
Subjects
Details
- Language :
- English
- ISSN :
- 00319007 and 10797114
- Database :
- OpenAIRE
- Journal :
- Physical Review Letters, Physical Review Letters, American Physical Society, 2016, 117, pp.024101. ⟨10.1103/PhysRevLett.117.024101⟩, Physical Review Letters, 2016, 117, pp.024101. ⟨10.1103/PhysRevLett.117.024101⟩
- Accession number :
- edsair.doi.dedup.....12a65bb6b9a884b84cc50d65d37e04df
- Full Text :
- https://doi.org/10.1103/PhysRevLett.117.024101⟩