Back to Search Start Over

Convergence Rates of Forward–Douglas–Rachford Splitting Method

Authors :
Jingwei Liang
Cesare Molinari
Jalal M. Fadili
Liang, Jingwei [0000-0003-0752-3851]
Apollo - University of Cambridge Repository
Equipe Image - Laboratoire GREYC - UMR6072
Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC)
Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Normandie Université (NU)
Universidad Tecnica Federico Santa Maria [Valparaiso] (UTFSM)
University of Cambridge [UK] (CAM)
École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
Source :
Journal of Optimization Theory and Applications, Journal of Optimization Theory and Applications, Springer Verlag, 2019, 8 (4), ⟨10.1007/s10957-019-01524-9⟩
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Over the past years, operator splitting methods have become ubiquitous for non-smooth optimization owing to their simplicity and efficiency. In this paper, we consider the Forward--Douglas--Rachford splitting method (FDR) [10,40], and study both global and local convergence rates of this method. For the global rate, we establish an $o(1/k)$ convergence rate in terms of a Bregman divergence suitably designed for the objective function. Moreover, when specializing to the case of Forward--Backward splitting method, we show that convergence rate of the objective function of the method is actually $o(1/k)$ for a large choice of the descent step-size. Then locally, based on the assumption that the non-smooth part of the optimization problem is partly smooth, we establish local linear convergence of the method. More precisely, we show that the sequence generated by FDR method first (i) identifies a smooth manifold in a finite number of iteration, and then (ii) enters a local linear convergence regime, which is for instance characterized in terms of the structure of the underlying active smooth manifold. To exemplify the usefulness of the obtained result, we consider several concrete numerical experiments arising from applicative fields including, for instance, signal/image processing, inverse problems and machine learning.

Details

ISSN :
15732878 and 00223239
Volume :
182
Database :
OpenAIRE
Journal :
Journal of Optimization Theory and Applications
Accession number :
edsair.doi.dedup.....12975fccf87fdf28e8ed39508817bb74
Full Text :
https://doi.org/10.1007/s10957-019-01524-9