Back to Search
Start Over
Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes
- Source :
- Climate of the Past, Vol 11, Iss 9, Pp 1197-1222 (2015)
- Publication Year :
- 2015
- Publisher :
- Copernicus GmbH, 2015.
-
Abstract
- Arctic land-cover changes (e.g., expansion of woody vegetation into tundra and effects of permafrost degradation) that have been induced by recent global climate change are expected to generate further feedbacks to the climate system. Past changes can be used to assess our understanding of feedback mechanisms through a combination of process modelling and paleo-observations. The sub-continental region of Beringia (Northeast Siberia, Alaska, and northwestern Canada) was largely ice-free at the peak of deglacial warming and experienced both major vegetation change and loss of permafrost when many arctic regions were still ice covered. The evolution of Beringian climate at this time was largely driven by global features, such as the amplified seasonal cycle of Northern Hemisphere insolation and changes in global ice volume and atmospheric composition, but changes in regional land-surface controls, such as the widespread development of thaw lakes, the replacement of tundra by deciduous forest or woodland, and the flooding of the Bering–Chukchi land bridge, were probably also important. We examined the sensitivity of Beringia's early Holocene climate to these regional-scale controls using a regional climate model (RegCM). Lateral and oceanic boundary conditions were provided by global climate simulations conducted using the GENESIS V2.01 atmospheric general circulation model (AGCM) with a mixed-layer ocean. We carried out two present day simulations of regional climate, one with modern and one with 11 ka geography, plus another simulation for 6 ka. In addition, we performed five ∼11 ka climate simulations, each driven by the same global AGCM boundary conditions: (i) 11 ka "Control", which represents conditions just prior to the major transitions (exposed land bridge, no thaw lakes or wetlands, widespread tundra vegetation), (ii) sea-level rise, which employed present day continental outlines, (iii) vegetation change, with deciduous needleleaf and deciduous broadleaf boreal vegetation types distributed as suggested by the paleoecological record, (iv) thaw lakes, which used the present day distribution of lakes and wetlands; and (v) post-11 ka "All", incorporating all boundary conditions changed in experiments (ii)–(iv). We find that regional-scale controls strongly mediate the climate responses to changes in the large-scale controls, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in the simulated climate changes. The change from tundra to deciduous woodland produces additional widespread warming in spring and early summer over that induced by the 11 ka insolation regime alone and lakes and wetlands produce modest and localized cooling in summer and warming in winter. The greatest effect is the flooding of the land bridge and shelves, which produces generally cooler conditions in summer but warmer conditions in winter, and is most clearly manifest on the flooded shelves and in eastern Beringia. By 6 ka continued amplification of the seasonal cycle of insolation and loss of the Laurentide ice sheet produce temperatures similar to or higher than those at 11 ka plus a longer growing season.
- Subjects :
- 010506 paleontology
010504 meteorology & atmospheric sciences
lcsh:Environmental protection
Stratigraphy
Climate change
Permafrost
01 natural sciences
Beringia
lcsh:Environmental pollution
lcsh:TD169-171.8
lcsh:Environmental sciences
0105 earth and related environmental sciences
lcsh:GE1-350
Global and Planetary Change
geography
geography.geographical_feature_category
Global warming
Paleontology
15. Life on land
Tundra
Arctic
13. Climate action
Climatology
lcsh:TD172-193.5
Climate model
Ice sheet
Subjects
Details
- ISSN :
- 18149332
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- Climate of the Past
- Accession number :
- edsair.doi.dedup.....128d75337b9700e9eb0d6bbeb4a894aa
- Full Text :
- https://doi.org/10.5194/cp-11-1197-2015