Back to Search Start Over

Evaluation of Weather Information for Short-Term Wind Power Forecasting with Various Types of Models

Authors :
Ju-Yeol Ryu
Bora Lee
Sungho Park
Seonghyeon Hwang
Hyemin Park
Changhyeong Lee
Dohyeon Kwon
Source :
Energies; Volume 15; Issue 24; Pages: 9403
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The rising share of renewable energy in the energy mix brings with it new challenges such as power curtailment and lack of reliable large-scale energy grid. The forecasting of wind power generation for provision of flexibility, defined as the ability to absorb and manage fluctuations in the demand and supply by storing energy at times of surplus and releasing it when needed, is important. In this study, short-term forecasting models of wind power generation were developed using the conventional time-series method and hybrid models using support vector regression (SVR) based on rolling origin recalibration. For the application of the methodology, the meteorological database from Korea Meteorological Administration and actual operating data of a wind power turbine (2.3 MW) from 1 January to 31 December 2015 were used. The results showed that the proposed SVR model has higher forecasting accuracy than the existing time-series methods. In addition, the conventional time-series model has high accuracy under proper curation of wind turbine operation data. Therefore, the analysis results reveal that data curation and weather information are as important as the model for wind power forecasting.

Details

ISSN :
19961073
Volume :
15
Database :
OpenAIRE
Journal :
Energies
Accession number :
edsair.doi.dedup.....123669eccbe78bda33292780e6334d44
Full Text :
https://doi.org/10.3390/en15249403