Back to Search
Start Over
Representativeness and face-ism: Gender bias in image search
- Source :
- New Media & Society, Ulloa, Roberto; Richter, Ana Carolina; Makhortykh, Mykola; Urman, Aleksandra; Kacperski, Celina Sylwia (2022). Representativeness and face-ism: Gender bias in image search. New media & society, p. 146144482211006. Sage 10.1177/14614448221100699
- Publication Year :
- 2022
- Publisher :
- GBR, 2022.
-
Abstract
- Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.
- Subjects :
- Sociology and Political Science
10009 Department of Informatics
representation
300 Social sciences, sociology & anthropology
000 Computer science, knowledge & systems
search engine
ddc:070
Experiment
Interactive, electronic Media
3312 Sociology and Political Science
360 Social problems & social services
Geschlechterverteilung
Bild
Social sciences, sociology, anthropology
interaktive, elektronische Medien
News media, journalism, publishing
Repräsentation
Algorithm auditing
face-ism
gender bias
image search
search engines
Sozialwissenschaften, Soziologie
algorithm
Communication
sex ratio
Suchmaschine
proportion of women
Frauen- und Geschlechterforschung
Algorithmus
online service
Online-Dienst
Frauenanteil
picture
ddc:300
Women's Studies, Feminist Studies, Gender Studies
Publizistische Medien, Journalismus,Verlagswesen
3315 Communication
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- New Media & Society, Ulloa, Roberto; Richter, Ana Carolina; Makhortykh, Mykola; Urman, Aleksandra; Kacperski, Celina Sylwia (2022). Representativeness and face-ism: Gender bias in image search. New media & society, p. 146144482211006. Sage 10.1177/14614448221100699 <http://dx.doi.org/10.1177/14614448221100699>
- Accession number :
- edsair.doi.dedup.....122f8494450f01d6090399c8e2e90fa7
- Full Text :
- https://doi.org/10.1177/14614448221100699