Back to Search Start Over

Modelling of gradual internal reforming process over Ni-YSZ SOFC anode with a catalytic layer

Authors :
Samuel Georges
Kelly Girona
Patrick Gélin
Nicolas Bailly
Yann Bultel
Sebastien Sailler
IRCELYON-Approches thermodynamiques, analytiques et réactionnelles intégrées (ATARI)
Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Canadian Journal of Chemical Engineering, Canadian Journal of Chemical Engineering, Wiley, 2015, 93 (2), pp.285-296. ⟨10.1002/cjce.22113⟩
Publication Year :
2014
Publisher :
Wiley, 2014.

Abstract

SSCI-VIDE+ATARI+KGR:PGE; International audience; Methane appears to be a fuel of great interest for solid oxide fuel cell (SOFC) systems because it can be directly converted into hydrogen by Internal Reforming within the SOFC anode. To cope with carbon formation, a new SOFC cell configuration combining a catalyst layer with a classical anode was developed. The rate of the CH4 consumption in the catalyst layer (Ir-CGO) was determined experimentally for small values of steam to carbon ratios. This paper proposes a modelling and a simulation, using the CFD-Ace software package, of the behaviour of a SOFC operated in Gradual Internal Reforming (GIR) conditions. This model of SOFC takes into account the kinetics of the steam reforming reaction in the catalyst layer in order to assess the influence of the steam to carbon ratio and the cell polarization. Because the risk of carbon formation is greater under GIR operation, a detailed thermodynamic analysis was carried out. Thermodynamic equilibrium calculations allowed us to predict the conditions of carbon formation occurrence.

Details

ISSN :
00084034 and 1939019X
Volume :
93
Database :
OpenAIRE
Journal :
The Canadian Journal of Chemical Engineering
Accession number :
edsair.doi.dedup.....120bac49bfa7f56b8576636cdc960b8d
Full Text :
https://doi.org/10.1002/cjce.22113