Back to Search Start Over

Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide

Authors :
Yosra Soussi
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
CPT - E8 Dynamique quantique et analyse spectrale
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Inverse Problems and Imaging, Inverse Problems and Imaging, 2021, 15 (5), pp.929-950. ⟨10.3934/ipi.2021022⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We study the stability issue for the inverse problem of determining a coefficient appearing in a Schr\"odinger equation defined on an infinite cylindrical waveguide. More precisely, we prove the stable recovery of some general class of non-compactly and non periodic coefficients appearing in an unbounded cylindrical domain. We consider both results of stability from full and partial boundary measurements associated with the so called Dirichlet-to-Neumann map. To the best of our knowledge, our results are the first results of stable recovery of such class of coefficients for an elliptic equation in an unbounded domain.

Details

Language :
English
ISSN :
19308337 and 19308345
Database :
OpenAIRE
Journal :
Inverse Problems and Imaging, Inverse Problems and Imaging, 2021, 15 (5), pp.929-950. ⟨10.3934/ipi.2021022⟩
Accession number :
edsair.doi.dedup.....11ddb1b503a43671f3bac81cdd5b55d5
Full Text :
https://doi.org/10.3934/ipi.2021022⟩